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This dissertation introduces R-selected spacecraft as a field of study that draws

from concepts in ecology, and introduces the Monarch spacecraft as a case

study for a system designed in accordance with the principles of this field. The

Monarch is a 2.5-gram spacecraft that is the first to trade quantity, rather than

cost, for low mission risk. By taking advantage of recent technological advance-

ments in unrelated disciplines and taking a statistical approach to mission as-

surance, R-selected spacecraft open the door to an entirely new paradigm in

space access and exploration. This dissertation describes the challenges and ad-

vantages unique to gram-scale, R-selected spacecraft. It also presents a number

of use cases — involving distributed in-situ sensing and planetary science —

that are unique to spacecraft of the Monarch’s diminutive size and large quan-

tity. This dissertation presents a routing policy for moving information through

large collections of Monarchs in low-Earth orbit, and results from simulated

lunar impact survival tests. Demonstrations of distributed sensing, leaderless

cooperation, routing, and actuation are presented and discussed to illustrate the

viability of some entirely new mission concepts. The final chapters anticipate fu-

ture capabilities for Monarchs and present a method for extracting insights from

the sorts of datasets which swarms of Monarchs will produce. The appendices

discuss applications for distributed in-situ sensing in digital agriculture, and

present datasets gathered by the Monarchs from vineyards and dairy calves.
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CHAPTER 1

INTRODUCTION: R-SELECTION AND MISSION ASSURANCE

Spacecraft design has historically traded high-cost development and engi-

neering for low mission risk. This successful model has changed the world. It

has brought us decades of discovery and exploration, rewriting the textbooks

on planetary science, heliophysics, Earth science, and astrophysics. But despite

how well it has served the scientific community, this model limits the types of

missions that we can perform.

There is no shortage of threats to the survival and operation of a spacecraft.

Wide temperature swings, many forms of radiation damage, and impacts with

micrometeoroids or larger objects are only a few that flight hardware experi-

ences. Vast communication distances, a dearth of resources for power scaveng-

ing, and launch mass-related challenges in power storage and generation top

the list of technological barriers [42]. Unlike for most everyday, terrestrial en-

gineering problems, the cost and high stakes of spacecraft motivate a formal

process, what engineering organizations know as mission assurance. Metrics

for mission assurance attempt to capture the probability of overcoming these

threats and achieving mission success. For conventional missions involving a

single, high-cost spacecraft, mission assurance essentially reduces to the prob-

ability of spacecraft success, which rarely exceeds about 95%. And unless the

spacecraft of interest is far more valuable than a single launch — examples in-

clude the International Space Station and the Hubble Space Telescope — we

never fix them when they fail. In fact, until the past decade, we gave little con-

sideration to servicing and repair in the design of spacecraft, making them vir-

tually impossible to fix even if we wanted to do so [37].
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Conventional metrics rarely consider how confidence measures change for

missions that include many identical spacecraft, since to date it has been cost

prohibitive to do so except in rare cases [9, 27, 50, 13]. If one could launch

thousands of identical spacecraft, confidence in any particular one might be

extremely low while confidence that some critical number remains operational

could remain high. This probabilistic model is a fundamental motivation for

the Monarch. Rather than trading high cost for low risk, Monarchs trade high

quantity for low risk. It is an idea that would have been impossible to realize

until only a few years ago.

The notion of trading quantity for risk is not without precedent in nature,

and is particularly apparent in reproductive strategies. Evolution has arrived at

two general solutions to the problem of maintaining a viable population from

one generation to the next. Some creatures, like humans or whales, employ K-

selection. K-selected species produce a relatively small number of offspring and

spend a tremendous amount of time and energy to make certain that each child

is successful. These animals are well suited to stable environments where they

can rely on long lifespans and a low mortality rates. This strategy is clearly a

successful one, as evidenced by the existence of all creatures that use it. There

is, however, an alternative solution.

Other creatures, like sea turtles, produce a relatively large amount of off-

spring and put extremely little investment into any one of them. The prob-

ability of survival for any particular offspring can be extremely low, but as

long as enough are produced then the population remains healthy. These are

R-selected species. R-selected species tend to have shorter lifespans than K-

selected species, faster sexual maturation rates, and larger numbers of offspring.
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They are far better suited to unstable environments than K-selected species [33].

See Fig. 1.1.

This dissertation asserts that spacecraft engineers have something to learn

from nature in this regard. Every spacecraft that humans have launched has

been K-selected. Engineers produce very few spacecraft in a lifetime, and they

devote an extreme amount of time, money, and energy into each of these space-

craft to be as certain as possible that it will survive for as long as intended.

See Fig. 1.2. K-selection has been the design paradigm for spacecraft strictly

out of necessity. Solving the mission assurance problem in the statistical man-

ner of R-selection requires spacecraft that can be manufactured at much lower

cost than conventional, K-selected spacecraft, launched in much greater quan-

tity, and with a much faster development cycle. This has not been possible until

only very recently when other industries (mostly cell phone and gaming in-

dustries) drove down the cost of automated circuit board manufacturing and

assembly, processors, and surface-mounted sensors. The world has not yet seen

R-selected spacecraft because it has never before been possible to manufacture

Figure 1.1: R and K selection in nature.
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R-selected spacecraft. The systems and programs that have come closest to this

sort of architecture include Globalstar, Iridium, Orbcomm, and the Educational

Launch of Nanosatellites (ELaNA). In these systems, the success of the mission

or the program does not depend on the success of every individual satellite,

and the system is robust to a small number of individual satellite failures [46].

These systems are best classified, however, as failure tolerant rather than fail-

ure reliant. In much the same way that a pride of lions may continue to survive

after the loss of a few individuals, Globalstar, Iridium, Orbcomm, and ELaNA

will continue to operate after the loss of a few spacecraft. This is a different sort

of risk management technique than that used by a decidedly R-selected species,

like ants, where loss is a critical and expected part of the survival strategy for the

colony. It is now possible to build spacecraft with this decidedly R-selected ap-

proach to mission assurance. R-selected spacecraft represent a paradigm shift

away from failure-tolerant systems and toward failure-reliant systems where

mission assurance is based on the statistics of survival, rather than failure rates.

Figure 1.2: R and K selection in spacecraft.
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This ushers in an entirely new field of study within aerospace engineering.

The list of open research questions associated with building and utilizing R-

selected spacecraft is nearly as extensive as the list of open research questions

for conventional spacecraft was in the 1950s-60s. The open questions are funda-

mental ones about sending and receiving data to these systems, controlling the

trajectory and orientation of each spacecraft and of the collection of spacecraft,

and basic design principles. These are not issues of incremental improvement

on existing technology, they are fundamental questions about construction and

utilization of a new kind of space system. Answering these questions will bring

space exploration and planetary science of an unprecedented variety. This dis-

sertation describes the first space system designed according to this new philos-

ophy.

The Monarch, shown in Fig. 1.3, is the first attempt to apply R-selection

to spacecraft, and that brings with it the same advantages and disadvantages

found in nature. Each satellite has a far higher probability of failure than any

conventional K-selected spacecraft, but, just as in nature, that probability of

failure is offset by the number of spacecraft that can be launched at a single

time. Their quantity makes them well suited for unstable environments and

dangerous missions, since they are not beholden to the probability of failure,

like conventional spacecraft, but instead exploit the probability of failure. R-

selected spacecraft have their own separate and unique set of use cases that are

apart from those of conventional spacecraft. What follows is an overview of

the challenges and advantages unique to gram-scale R-selected spacecraft. This

dissertation also presents a number of use cases — involving distributed in-situ

sensing and planetary science — that are unique to spacecraft of the Monarch’s
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diminutive size and large quantity. Results from simulated lunar impact sur-

vival tests and a case-study planetary science mission are presented and dis-

cussed, suggesting one particular use case. Demonstrations of distributed sens-

ing, leaderless cooperation, routing, actuation, GPS acquisition, and powering

are presented to illustrate the viability of some entirely new mission concepts.

In the final chapters, I anticipate future capabilities for Monarchs and present

a method for extracting insights from the sorts of datasets which swarms of

Monarchs will produce. The appendices discuss applications for distributed in-

situ sensing in digital agriculture, and present datasets gathered by the Monar-

chs from vineyards and dairy calves.

Figure 1.3: A Monarch spacecraft
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CHAPTER 2

THE MONARCH SPACECRAFT

Designing a mission that trades high quantity for low risk rather than high

cost for low risk requires a spacecraft that can be manufactured cheaply and

in bulk, can launch and deploy in much greater quantities than conventional

spacecraft, and can maintain the core capabilities required for it to be useful.

These goals are now achievable. The economies of scale driven largely by the

consumer-electronics industry (specifically, cell phones and gaming) have re-

duced the cost of surface-mounted processors, sensors, and radios to a tiny frac-

tion of what they were just a decade ago [38]. This revolution has also driven

down the cost and timeframe for manufacturing and assembly of printed circuit

boards. The Monarch takes advantage of both of these trends. It is a spacecraft

built through entirely automated processes, the same processes that build circuit

boards for cell phones and other electronics. Monarchs use sensors and proces-

sors from game controllers, laptops, and other consumer-market electronics for

which economies of scale have driven down component costs. The result is a

2.5 gram spacecraft that can be manufactured in bulk for less than $50 apiece,

launched and deployed by the hundreds or thousands, and can go places and

do things that conventional spacecraft cannot. Fig. 2.1 shows the front and rear

of the spacecraft. The components are labeled. Monarchs are not small versions

of large spacecraft, and they do not replace conventional spacecraft. Instead,

they are a new way to access and explore space, and they have their own new

and unique use cases.

The Monarch is an example of what has come to be known as a chipsat, a

concept whose development began in earnest at Cornell University in 2007, al-
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Figure 2.1: Monarch spacecraft with consumer-market electronics compo-
nents labeled.

though earlier work at the Aerospace Corporation in 1999 offered insight into

what might be possible at this scale [15]. The first publications by Atchison

et al described spaceflight dynamics at the microscale. The surprising benefits

of small scale, such as the importance of effects like solar pressure, drag, and

the Lorentz force in Earth orbit to alter trajectories in unfamiliar ways, moti-

vated the creation of a prototype, small-scale free-flyer to verify these effects

experimentally. From 2007 through 2016, Cornell’s research focused on Sprite,

the name Atchison gave them. Sprites were 4-gram femtosatellites or chipsats,

which have now flown four times (on the International Space Station in 2011,

on Kicksat-1 in 2014, Venta-1 in 2016, and KickSat-II in 2019), with an addi-

tional mission planned in 2020. Kicksat-1 was the world’s first crowd-funded

spacecraft (via Kickstarter.com), almost singlehandedly designed and built by

Zac Manchester, then a student at Cornell and now on the faculty at Stanford.

Kicksat-1 took 104 early-generation Sprites to orbit [24]. Kicksat-2 carried 128.

A Sprite on The Venta-1 mission — again, Manchester’s work — established

the feasibility of communicating across large distances with low power: 10 mW

transmission reached over 1500 km with suitable forward-error correction, re-
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quiring only a laptop and HAM radio antenna. With their exceptionally low

ballistic coefficient, atmospheric drag deorbits the chipsats in a matter of days,

as shown in Chapter 3 and validated by the KickSat-2 mission. Different debris

risk mitigation strategies must be employed at higher orbits. Such strategies

may include building the spacecraft of a material that will sublime away, or

giving them thrust capability for escaping or entering the atmosphere.

The Monarch has advanced well beyond these early efforts. Here, we de-

scribe the Monarch in terms of the subsystems associated with larger, conven-

tional spacecraft, as labeled in Fig. 2.2. These subsystems include telemetry and

command, power generation, attitude determination and control, navigation,

and payload [50]. The size of the Monarch makes some of these subsystems dif-

Figure 2.2: Electrical schematic for Monarch spacecraft.
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ferent from their larger-spacecraft analogues, and it couples some subsystems

that are not coupled in larger spacecraft. The fundamental concept of trading

quantity for risk finds its way into each of these subsystems.

2.1 Telemetry and Command

Telemetry and command takes place via a 25 mW ISM-band radio and and em-

bedded PCB antenna [17]. With such a low-power transmitter, and without the

ability to accommodate a high-gain antenna, the data rate from any particular

Monarch is substantially lower than larger spacecraft with more power avail-

ability and directed, high-gain antennas. With some reasonable assumptions on

the parameters associated with the communication system (500 km transmis-

sion distance, isotropic transmission antenna, 915 MHz carrier frequency, 7dB

receiver antenna, 64 kHz bandwidth), it can be shown that the Shannon Limit

for a Monarch in Earth orbit is approximately 84 kilobits per second [12, 41, 6].

Thus, if a line rate less than 84 kbps is used, there exists a coding technique (in-

volving error correction) that allows the probability of error at the receiver to be

made arbitrarily small.

Figure 2.3: Autonomous radio synchronization.
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Figure 2.4: Packet routing.

However, these comparatively low transmission rates per Monarch are not

the proper metric to consider, since many hundreds or thousands of Monarchs

may be deployed simultaneously, each of which may communicate data at this

comparatively low transmission rate. This is how the notion of quantity vs. cost

finds its way into this subsystem. The data rate from the entire collection is

competitive with large, high-power spacecraft and, furthermore, the dataset is

of an entirely different sort. Rather than receiving large amounts of data from a

few sensors on a single spacecraft at a single location, a dataset from a collection

of Monarchs comes from many thousands of sensors distributed across vast re-

gions of space. This distribution creates the opportunity for entirely new sorts

of missions.

A series of technical demonstrations proved the viability of many aspects

of this subsystem. To demonstrate leaderless cooperation and networking, a

collection of Monarchs were programmed as pulse-coupled oscillators. See

Fig. 2.3. They began beaconing radio packets at random intervals and, over

the course of a few minutes, synchronized their transmissions. In a second
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demonstration, the same collection of Monarchs was programmed to only

send/receive transmissions from a single other Monarch. Breaking the chain

of communication caused all downstream Monarchs to lose access to informa-

tion from those upstream. See Fig. 2.4. This demonstrates the ability of the

Monarchs to send data through specified paths in a collection.

2.2 Power and Thermal

Trading high quantity for low risk also affects the Monarchs power subsystem.

On large, conventional spacecraft, a battery keeps the spacecraft awake when it

passes through the shadow of the Earth. For missions involving a single high-

end spacecraft, this necessity is inescapable, since power keeps the spacecraft

thermally regulated [50]. With thousands of Monarchs, power can be handled

differently. At only 2.5 grams (the mass of an American penny) and with a

very flat shape, Monarchs reach thermal equilibrium much faster than larger

spacecraft. At their size, it costs more energy to keep a battery warm in eclipse

than that battery can store when in sunlight [50]. Thus, these spacecraft have

no means of thermal regulation. Instead, all sensors, processors, and compo-

nents are chosen based, among other things, on their operational temperatures.

This precludes the use of any battery, the operational temperatures for which

are exceeded while in orbit. With a small capacitor, one that is insensitive to

the thermal environment, Monarchs can continue to function at low duty cycle

in eclipse. Otherwise, they sleep when in eclipse and wake when in sunlight.

Networking capability ensures that a swarm or cluster of Monarchs is always

on, in a generalized sense, even when a single spacecraft is unpowered. So,

collecting scientific data and communicating it to Earth can continue, regard-
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Figure 2.5: Magnetic field normal to Monarch surface, before/after torque
coil is enabled.

less of the local solar flux. For missions involving monolothic spacecraft, such

an operations concept would be far from optimal, and likely unacceptable. For

Monarchs, however, quantity makes this arrangement perfectly adequate.

2.3 Attitude Determination and Control

Attitude determination looks very much the same on Monarchs as on large

conventional spacecraft. In fact, the pointing agility (combining angular rate,

acceleration, and so forth) is roughly independent of length scale. However,

attitude and navigation are uniquely coupled for spacecraft of their size. Each

Monarch carries a gyroscope, magnetometer, and light sensors that act as coarse

Sun sensors. So, three-axis attitude determination is possible [26, 44, 48, 25].

Each Monarch also carries a GPS receiver and a GPS antenna, with which it

may determine its location, velocity, and the absolute time when operating in

Earth orbit. Attitude control is a bit more subtle on the Monarch than on a con-
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Figure 2.6: Test setup for torque coil actuation demo.

ventional spacecraft. Monarchs drive electrical current through a coil of wire

embedded in their interior in order to create their own local magnetic field. Fig.

2.5 shows normal-axis magnetic field measurements from a Monarch’s onboard

magnetometer before and after the torque coil is turned on. This magnetic mo-

ment torques against the Earths magnetic field, thereby changing the orienta-

tion of the spacecraft. This technique is common in larger spacecraft [45, 22, 49],

particularly CubeSats, but its implementation in Monarchs is unique in that the

coils lie only in the plane of the printed circuit board. The inertia tensor of

the Monarch is such that it is passively stable in spin about its normal axis [20].

Rather than requiring 3-axis control, Monarchs use their torque coils to induce

and cease precession about the Earth’s magnetic field vector during a stable

spin, a 2-axis control solution. For spacecraft with area-to-mass ratios as high

as that of the Monarchs, attitude and trajectory are highly coupled in low Earth

orbit, where the dominant orbital perturbation is atmospheric drag [5]. As the
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Figure 2.7: Monarch actuating via torque coils.

Monarch leans its flat face into the velocity direction, drag slows it relative to

other Monarchs whose thin edge faces the velocity direction. In changing their

orientation, a swarm of Monarchs can both affect power generation and man-

age the shape of the swarm. This capability also has implications for the sorts of

missions for which Monarchs are well suited. Figs. 2.6 and 2.7 show a demon-

stration of a Monarch actuating with its onboard torque coils. A solar-powered

Monarch is free-floating in a pan of water, with its face against a block of alu-

minum. When powered via light, the Monarch sets up an oscillating current

through its torque coils which induces eddy currents in the block of aluminum,

repellng the Monarch. This is a different sort of actuation than will be used in
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space, but it shows that the torque coils can indeed actuate a Monarch.

2.4 Payload

Payloads for Monarchs are different from payloads for conventional spacecraft.

Their size necessarily limits the aperture, which precludes remote-sensing pay-

loads. Large spacecraft will always be better suited for remote sensing. Instead,

Monarchs are well suited for carrying sensors that measure characteristics of

the environment in the immediate vicinity of the spacecraft — quantities in-

cluding temperature, pressure, electromagnetic fields, particle distribution, ra-

diation, etc. It is best to think of a collection of Monarchs as a single radio-

networked sensor, each node of which remotely reports its local in-situ mea-

surements. Such a collection gathers data of the spatial breadth associated with

remote sensors, but with the localized depth of in-situ sensors. Monarchs enable

missions of two very broad types: those that involve spatially distributed in-

situ measurement, and those that involve actions that pose extremely high risk

to individual spacecraft. They offer in-situ measurements with remote delivery

of data. Section 4.4 and the appendices present and explain some distributed

in-situ datasets that the Monarchs gathered on Earth.
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CHAPTER 3

ROUTING MECHANISM FOR DISTRIBUTED MONITORING MISSIONS

3.1 Background and Motivation

As discussed in Chapter 1, chipsats do not replace conventional spacecraft.

They have their own new and unique set of use cases. These use cases include

missions involving massively distributed sensing and distributed monitoring.

In distributed sensing missions, many thousands of chipsats are distributed

over a vast area and each communicates local measurements through the collec-

tion and back to an operator. In distributed monitoring missions, the chipsats

are again spread out over a vast area, but each reports detection of some stim-

Figure 3.1: Artistic representation of a swarm of networked Monarchs per-
forming a distributed in-situ sensing mission in low-Earth or-
bit.
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ulus (a solar event, activity of a spacecraft under surveillance, etc). Distributed

sensing requires high-bandwidth communication of information through the

network of chipsats, distributed monitoring requires comparatively low band-

width. These constellations could be deployed in LEO for upper atmospheric

or heliophysics studies, for spacecraft surveillance, or distributed monitoring

for solar flares. Alternatively, they could be used in deep space for missions

involving distributed plume sampling around Enceladus or planetary impact

missions. All of these missions require exfiltration of data from the collection

of chipsats to a receiver station. Fig. 3.1 shows an artistic representation of a

distributed sensing/monitoring mission.

The conventional method for interacting with a spacecraft is to send it com-

mands and receive telemetry when it travels within range of a ground station.

Between passes, a conventional spacecraft will log data to onboard memory for

later downlink [4]. There are rare examples of collections of satellites in which

individual spacecraft that are out of range of a ground station can still com-

municate data to that ground station by sending them through an intermediate

spacecraft. The Iridium constellation, with 66 satellites, is the best known ex-

ample of one of these systems. Even for a dynamic network of 66 spacecraft, the

number of nodes is small enough for estimates of the positions of every node in

the network to be continuously maintained. Consequently, routes through the

Iridium constellation and other constellations of conventional spacecraft may

be precomputed for each packet. Routing tables are continually updated as the

topology changes [34, 18]. This method will not work for swarms of hundreds

of thousands of chipsats, for which it is entirely intractable to maintain contin-

uous estimates of individual node positions or to continually update routing

tables.
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SpaceXs Starlink will ultimately be composed of nearly 12,000 cooperative

spacecraft. Each spacecraft is 227 kg, and the collection is carefully arranged

into three orbital shells. Each spacecraft carries thrusters and actuators for at-

titude control and for maintaining formation [1]. As a consequence, routing

strategies through this network can exploit the determinism introduced by its

careful arrangement and maintenance. Routing paths can be established open-

loop, based on the known relative positions of all nodes [14]. The same method

cannot be used for chipsats, which trade orbital control for size and expense.

Because of their exceptionally small size and mass, chipsats make spacecraft

constellations of an unprecedented size eminently achievable. With the same

payload mass as a single Iridium spacecraft, one could launch over 275,000

Monarch spacecraft [23]. It is entirely intractable to maintain continuous esti-

mates of individual node positions or to continually update routing tables for

dynamic networks of this size. Furthermore, Monarchs sacrifice much of the

capability of large, conventional spacecraft in order to achieve their tiny form

factor. A practical and scalable routing mechanism for communicating data

through a network of chipsats must rest on realistic assumptions for the infor-

mation available to each node in the network and the capabilities of each node

in the network.

This chapter argues which information should and should not be assumed

to be available to each node in a network composed of an arbitrary number of

chipsats, and then derives the best achievable routing mechanism for a packet

through an Earth-orbiting collection of chipsats under the argued assumptions.

It does so by framing the problem as a series of optimal stopping problems and

applying the dynamic programming equations. Routing data from any origin
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node in the network to any destination node in the network can be viewed as

a series of decisions. The origin node will encounter a number of intermediate

chipsats as it moves along its trajectory. At each of these encounters, it must de-

cide whether the expected time to destination is minimized by relinquishing the

data that it carries to the intermediate chipsat that it has encountered, or by re-

taining that data for itself. This decision is repeated for every encounter with an

intermediate chipsat until the data reaches its destination. Because the derived

mechanism does not consider bottlenecking at ground stations, the scope of ap-

plication is limited to distributed monitoring missions, wherein a collection of

chipsats route low-bandwidth indication of a stimulus through the network to

a receiver station.

This chapter treats only two-dimensional networks of chipsats (i.e. networks

for which all chipsats occupy the same plane). It does so for three reasons. The

first is that restraining oneself to two dimensions leads to the simplest form of

a generalizable routing mechanism. The second reason is that this is not an

unreasonable assumption for a collection of chipsats deployed from a common

mothership in low-Earth orbit. At these altitudes, atmospheric drag is by far

the dominant perturbing force on spacecraft of the Monarch’s area to mass ra-

tio. All chipsats deployed in low-Earth orbit will deorbit after 3-7 days, which is

a long enough period of time for extensive dispersion in the direction of travel,

but not a long enough time for extensive dispersion in other directions [5]. See

Fig. 3.2 for results from a simulated deployment of 500 Monarchs from the In-

ternational Space Station with randomized orientations and under the influence

of J2 gravity and drag, which substantiates this claim. Finally, restricting one-

self to coplanar orbits allows for the performance of the routing mechanism to

be evaluated on an exhaustive collection of all possible configurations of orbits.
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Figure 3.2: Simulation results for 500 Monarchs deployed from the Inter-
national Space Station (individually colorized) with random-
ized orientations, under influence of J2 gravity and drag.
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3.2 Assumptions

A routing mechanism’s efficiency through any network is limited by knowledge

of the topology of that network. In the case that one knows the exact relative

positions of all nodes in a network, then one can (in principle, if not in practice)

solve for the fastest path from any node in that network to any other node, or

for the set of all best paths [7]. This is the case for the Iridium constellation. The

speed with which one arrives at the optimal path is obviously also of relevance

for any practical application. This chapter is interested exclusively in practical

routing mechanisms of the sort that could be implemented on existing chipsat

hardware in the immediate future, and that scale to networks of the size that

chipsats enable. Deriving such a mechanism requires a realistic set of assump-

tions surrounding the capability of each node and the information available to

each node. Each of these assumptions is stated and justified in this section.

3.2.1 Assumptions Regarding Information Availability

With respect to available information, it is assumed that each node knows its

own position and velocity for all time, each node is able to measure absolute

and elapsed time, and each node knows the angular rate of the Earth. The source

for position, velocity, and absolute time information is the onboard GPS carried

by each chipsat. The source for elapsed time is a timer in the onboard proces-

sor. The angular rate of the Earth is, of course, a parameter. This parameter

is necessary for each chipsat to calculate its expected time to a ground station,

which is co-rotating with the Earth, as explained in Section 3.4. It is assumed

that the GPS does not enter a failure mode in which it reports erroneous posi-
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tions and velocities, but is instead either totally functional or unresponsive. We

also assume negligible drift in the onboard timer over the course of the chipsat’s

lifetime. The information that is available to each node does not require justifi-

cation, given the suite of sensors with which each chipsat is equipped [2]. It is

the information that is not available to each node (or to human operators or to

ground-based equipment) that requires justification.

No node in the network, nor any ground-based equipment, is assumed to

have knowledge of the number of nodes in the network. Chipsats are designed

such that their high probability of failure (high relative to conventional space-

craft) is offset by the quantity that can be deployed at a single time. The con-

sequence of this is that the number of functional nodes in the network will de-

crease from a known initial number to zero at a difficult-to-estimate rate. The

efficiency of a routing mechanism through a network composed of nodes like

these should not, for that reason, depend on knowledge of the number of nodes

in the network. Furthermore, chipsats are so inexpensive to launch and deploy,

a practical application will likely involve augmenting the network with fresh

chipsats through subsequent launches. For this reason too, the routing mecha-

Table 3.1: Assumptions on information available to each node

Available Not Available

Node’s own position Number of nodes in network

Node’s own velocity Topology of network

Time (absolute and elapsed) Location of ground station

Angular rate of Earth Position/velocity of any other nodes
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nism should not depend on knowledge of the number of nodes that compose

the network, and should instead have performance that is agnostic to this in-

formation. Section 3.6 discusses some of the practical considerations associated

with replenishing a chipsat swarm from additional motherships.

The topology of the network is also assumed unknown to any of the nodes.

Spacecraft with area to mass ratios as high as those of Monarchs and other chip-

sats are extremely susceptible to orbital perturbation in low-Earth orbit. Atmo-

spheric drag is the most significant perturbing force, with solar pressure also

contributing to alterations in trajectory. Both of these forces depend directly

on the effective surface area of each chipsat, which in turn depends on the atti-

tude of the chipsat [5]. For collections of thousands to hundreds of thousands of

nodes, these perturbing forces will cause the topology of the network (i.e. which

nodes communicate with which other nodes, and at which times) to change

constantly and chaotically. The efficiency of the routing mechanism, therefore,

should not rest on assumptions regarding the topology of the network.

The final assumption regarding information availability to each node is one

that would not be strictly required but that is, in the estimation of the author, a

good design decision for any practical application involving chipsats. No node

is assumed to have information regarding the locations of ground stations. Un-

like conventional spacecraft that will typically employ high-gain fixed anten-

nas for high-bandwidth communication, chipsats instead communicate to the

ground via handheld antennas that interface with a laptop computer [2, 24].

Rather than receiving high-bandwidth information from a single spacecraft, as

is conventional, the model for chipsats is low-bandwidth communication from

each of many nodes in a network. Considered as an aggregate, the data rates
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for a single conventional spacecraft and for a swarm of many chipsats are of

the same order of magnitude, but the data rate from any particular chipsat is

much lower. This enables handheld, portable receiver stations. Consequently,

the performance of the routing mechanism should be agnostic to the location of

the receiver station. This set of assumptions is summarized in Table 3.1.

3.2.2 Assumptions Regarding Capability

Each chipsat is equipped with a low power radio transceiver. They use these

transceivers to communicate both to the ground stations and to one another.

Substantial signal processing, which requires approximately the computational

ability a commercially available laptop, is required by the ground stations in

order to receive these transmissions [24]. Each chipsat’s processor has signifi-

cantly less computational ability than a laptop, and therefore the transmission

distances from chipsat to chipsat are significantly shorter than from chipsat to

ground [17]. The consequence is that, in a collection of very many chipsats,

the individual chipsats will drift into and out of communication distance with

one another. As discussed in the previous section, the particular chipsats that

pass into communicable range with one another will change unpredictably as

the topology of the network evolves. When two chipsats are within communi-

cable range, they may share information with one another. When they are out

of communicable range, they cannot share information and they do not store

any information about the trajectory of the node with which they had previous

contact (since these trajectories change so quickly, and since this too does not

scale as the number of nodes increases). It is furthermore assumed that each

of the chipsats uses Code Division Multiple Access (CDMA), which allows the
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ground station to differentiate signals from hundreds or thousands of chipsats.

3.3 Problem Statement

This chapter considers the situation in which an arbitrarily large number of

chipsats are deployed from a common mothership in low-Earth orbit. The initial

conditions imparted to each chipsat are randomized, with some being boosted

to orbits with higher altitudes than the mothership and others landing on orbits

lower than that of the mothership. This variation in eccentricity and semimajor

axis, along with perturbations from atmospheric drag, solar pressure, and other

higher-order effects, leads to rapid dispersion of the chipsats in the along-track

direction and comparatively little dispersion in altitude, as shown in Figs. 3.3

and 3.2.

The probability density function for the position of any particular chipsat

is a function only of its eccentricity and semimajor axis (see Section 3.7). After

a sufficient amount of time has passed, the positions of all chipsats are well

approximated by independent distributions [3]. Fig. 3.4 shows the randomly

Figure 3.3: Example of chipsat deployment and dispersion
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sampled true anomalies of two spacecraft on orbits with slight variations in

eccentricity and semimajor axis. It can be seen that, after sufficient time, the

pairwise positions of these two spacecraft are well approximated by their joint

probability density function, represented by the contours.

Figure 3.4: True anomalies of two Monarchs deployed on orbits at geo-
stationary altitude and inclination, after varying numbers of
orbits. Their orbits are identical except of a variation in eccen-
tricity by one tenth of a percent.
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The objective is to develop a mechanism that will select the path which min-

imizes the expected time that it takes for the packet to reach the ground station,

under the assumptions justified in Section 3.1. As explained in the introduction,

this chapter only treats networks for which all chipsats occupy the same orbital

plane (same inclination and longitude of ascending node). The network under

consideration is an example of an opportunistic network, where edge connec-

tions are unpredictable and the topology of the network is not known to any

of the constituent nodes. A path from a particular node to the destination may

change or break during the routing process. There are two general strategies for

routing through these networks: flooding-based approaches and forwarding-

based approaches [16]. In flooding-based approaches, like epidemic routing,

each node broadcasts the packet to every one of its neighbors until the packet

reaches the destination. These approaches have the benefit of getting the data to

its destination as quickly as possible, at the cost of bandwidth. Though strate-

gies exist for reducing the overhead associated with epidemic routing [47], it

still requires more resources than forwarding-based approaches.

Forwarding-based approaches select a single path to the destination, rather

than letting all possible paths compete. In a forwarding-based approach, the

node carrying the packet chooses which neighbor to which to handoff the data

(or whether to retain the data) based on some piece of information. This in-

formation may be the proximity of each neighbor to the destination, or local

knowledge of the network. This strategy has the advantage of increased band-

width because more packets may be routed at once, since fewer nodes are occu-

pied with a single packet than in an epidemic approach. The cost is potentially

choosing a sub-optimal path [16]. This chapter presents a forwarding-based ap-

proach through an opportunistic network of chipsats, where routing decisions
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are based on the instantaneous orbital mechanics of neighboring chipsats. This

approach has the advantage of allowing more packets to be transmitted at once

than would be allowed by an epidemic approach, and the disadvantage of plac-

ing packet delivery at risk. If the chipsat carrying the packet fails, then the

packet fails to reach its destination. For many distributed monitoring applica-

tions, this is an appropriate trade-off. The mechanism by which these decisions

are made is derived through dynamic programming.

3.4 The Dynamic Programming Equations

The dynamic programming technique is generally useful for solving problems

that involve a series of decisions. The objective is to make each decision such

that the cost (some quantifiable metric for the undesirableness of an outcome)

over a given number of stages is minimized. Typically, each of these decisions

involves a tradeoff between the immediate cost incurred at each particular stage

and the anticipated future cost incurred as a consequence of each decision. A

routing mechanism that optimizes only over each immediate step without con-

sideration for future incurred costs is labeled a myopic mechanism. [7]

Problems exist for which the optimal mechanism is a myopic one (i.e. the

cost over all stages is minimized by minimizing the cost at each stage). There

exists another class of problems for which a myopic mechanism is suboptimal,

but a lack of information about the number of stages in the problem or of the

structure of the problem makes such a mechanism the only option. The on-orbit

routing problem considered in this chapter falls into both categories, depending

on the configuration of orbits. Each chipsat optimizes over each decision with-
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Figure 3.5: Illustration of state variables

out consideration for future cost incurred as a consequence of that decision. It

does so because no chipsat has enough system knowledge to estimate future

incurred cost. It will be shown that, for some configurations of orbits, this my-

opic mechanism yields the optimal mechanism (the mechanism that generates

a route with the shortest expected time to ground station). For other configu-

rations of orbits this myopic mechanism is suboptimal, but it is the best that

can be achieved under the necessary assumptions for grounding this problem

in reality, as described in Section 3.2. Solving a problem using the dynamic pro-

gramming technique requires a state representation and state update equation,

a representation for control input, representations for stopping and stage costs,

and an optimal value function. With these defined, one can solve for the optimal

control mechanism for minimizing cost over a number of stages.

The state of the system is specified by the instantaneous perigee altitude of

the chipsat carrying data to be routed, the apogee altitude of the chipsat, the

angular position of the chipsat measured from its perigee position, and an iden-

tifier for which chipsat is presently carrying the data, as shown in Eqn. 3.1

and Fig. 3.5. All of these quantities can be found directly from the GPS data
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available to each chipsat. In most dynamic programming problems, the state is

indexed by time, and the state update equations evolve each state variable from

a timestep k to the next timestep k+1. For this particular problem, the state is

indexed by a quantity other than time. Instead, the state is indexed by swept

Earth angle, as shown in Fig. 3.6. As explained later in this section, each chipsat

maintains an estimate of its own expected time to a ground station, the precise

location of which is unknown to any chipsat. As each chipsat sweeps more of

the Earth without discovering the ground station, it becomes increasingly confi-

dent that it will find it in the near future. In the case of the 2-dimensional prob-

lem considered in this chapter, a chipsat can be completely confident that it will

discover a ground station as it approaches a swept angle of 2π radians without

having yet discovered it. These estimated times to ground station, which in-

corporate the orbital mechanics associated with each chipsat’s apogee, perigee,

and true anomaly, form the basis of routing decisions.

Each time the data-carrying chipsat encounters another chipsat, it updates

its state as shown in Eqns. 3.4-3.5. It does so by measuring its current apogee

Figure 3.6: Illustration indexing variable, φ
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altitude, perigee altitude, and angular position from its onboard GPS, and scal-

ing its angular distance traveled by the angular rate of the Earth to determine

its updated swept Earth angle, which indexes the state. This update equation

is shown in Eqn. 3.5. Note that the chipsats angular position, θ, is a form of

true anomaly that may exceed 2π radians. It is a measure of angular distance

traveled since routing began. The control input to the system is very simple.

At each encounter with an intermediate chipsat, the chipsat carrying data to be

routed may take one of two actions. It may either relinquish its data to the en-

countered chipsat, or it may retain the data for itself, as shown in Eqn. 3.3. It

makes this decision on the basis of the stopping cost, terminal cost, and optimal

value function.

State representation:

xφ− =



γ chipsat identifier

p perigee altitude (km)

a apogee altitude (km)

θ angular position (rad)

(3.1)

Initial condition:

xφ0 =



γ0

p0

a0

θ0


(3.2)
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Control input:

uφ− ∈


1 Relinquish data

0 Retain data
(3.3)

State update equation:

xφ+
= f (xφ− , uφ−) =



γ+ −→ from routing decision

p+ −→ from GPS

a+ −→ from GPS

θ+ −→ from GPS


(3.4)

Index update equation:

φ+ = (θ+ − θ−)
TEarth

TEarth − TNode
(3.5)

The stopping cost is the cost incurred if the chipsat carrying data relin-

quishes that data to the encountered chipsat. This cost is the optimal expected

time to a ground station for the chipsat to which the data is relinquished. Note

that, with global knowledge, this calculation would include a term that incorpo-

rates the probability of encountering another chipsat with a faster expected time

to the ground station in the future. Under the assumptions required for mak-

ing this routing mechanism a practical one, described in Section 3.2, no chipsat

has access to the global information required to arrive at these probabilities. As

a consequence, the optimal expected time to the ground station (which would

include information about probability of future encounters) is approximated by

Eqn. 3.8. Eqn. 3.8 gives the expected time to the ground station without con-

sideration of the possibility of future encounters. Section 3.5 shows that this

approximation still yields the optimal route for particular configurations of or-

bits, since it is only the relationship between the stopping cost and the optimal
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cost to go that is of consequence for decision making, and not the particular

values of each, as shown in Eqn. 3.12.

Note also that the stopping cost optimizes only over time, rather than jointly

optimizing over energy and time. This is a consequence of the chipsats’ archi-

tecture. The chipsats do not have any means of propulsion, nor do they have

any power storage in the form of batteries. All of the electronics are powered

directly from a 300 mW solar cell. The power availability from the solar cell

significantly exceeds the power draw from the electronics. Thus, when a chip-

sat is illuminated, it has a continuous supply of more-than-ample power. It is

for this reason that the stopping cost optimizes over time, and not over energy

and time. If the chipsats were storing energy and strategically meeting it out,

or if they were using an expendable resource for propulsion, then such a joint

optimization would be the prudent choice.

From the expression for the stopping cost, it can be seen that the terminal

cost (the cost incurred at a swept angle of 2π radians) is the expected time from

the initial swept angle, φ0, if no handoff has occurred. If a handoff has occurred,

then the terminal cost is 0. The optimal value function is shown in Eqn. 3.11,

which again involves an approximation of the optimal expected time to ground

station of the same sort used for the stopping cost. This yields the simple thresh-

olding policy shown in Eqn. 3.12. At each encounter, the chipsat carrying data

uses its onboard GPS unit to update its state and state index (swept angle). It

then shares this state index with the encountered chipsat, and both calculate

their expected time to the ground station by integrating their own probability

density functions for position, as shown in Eqn. 3.8. The myopic routing mech-

anism then simply chooses whichever chipsat has the shortest expected time to
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the ground station, and the process repeats until the ground station is encoun-

tered.

The routing mechanism is optimal if and only if the approximations for the

expected time to ground station involved in the calculation of the optimal time

to go, Vφ+
(xφ+

), and the stopping cost, cs, are such that the relationship between

these approximations always yields a correct decision. Eqn. 3.12 makes it clear

that it is the relationship between Vφ+
(xφ+

) and cs that is of consequence for deci-

sion making, and not the values themselves. For some configurations of orbits,

this is the case. For others, it is not.

Stopping cost:

cs = optimal expected time to destination

for encountered chipsat (3.6)

Stage cost:

cφ−(xφ− , uφ−) =


0, uφ− = 0

cs, uφ− = 1
(3.7)

Optimal expected time to ground station (see appendices):

Eφ−[t](xφ−) ≈
1

2π − φ−

∫ 2π

φ−

[ TnodeTEarth

2π (TEarth − Tnode)∫ y

φ−

(1 − e)
3
2(

1
1+e

) 3
2
(
e cos

(
(θ− + φ) TEarth

TEarth−Tnode

)
+ 1

)2
dφ

]
dy

(3.8)

Terminal cost:

cφ=2π =


Eφ0[t](xφ0) γφ=2π = γ0

0 γφ=2π , γ0

(3.9)
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Terminal value function:

V∗φ=2π(xφ=2π) =


Eφ0[t](xφ0) γφ=2π = γ0

0 γφ=2π , γ0

(3.10)

Optimal value function:

V∗φ− = min
u∈{0,1}

E
[
cφ−(xφ− , uφ− ∈ {0, 1} + V∗φ+

(xφ+
)
]

= min
[
cs,V∗φ+

(xφ+
)
]

≈ min
[
cs, Eφ+

[t](xφ+
)
]

(3.11)

Optimal routing mechanism:

g∗φ− =


1 cs < Vφ+

(xφ+
)

0 cs ≥ Vφ+
(xφ+

)
(3.12)

3.5 Performance

The relationship between the optimal time to go, Vφ+
(xφ+

), and the stopping cost,

cs, will be such that the relationship between these approximations will always

yield a correct decision, as shown in Eqn. 3.12, if and only if the following

conditions are met:

1. After a routing decision among two chipsats, it is impossible that the chip-

sat that had a longer expected time to the ground station (and therefore

relinquished the data) at the time of the routing decision will both a) later

attain a shorter expected time to ground station than the other chipsat and

b) overtake the other chipsat at a distance that exceeds the node-to-node

communication distance before the entire Earth has been swept.
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Figure 3.7: Examples of fully connected orbit configurations

2. After a routing decision has been made, it is impossible that the chip-

sat which relinquished the data will encounter another chipsat that both

a) has a shorter expected time to ground station than the first chipsat to

which the data was surrendered and b) will not come into communicable

range with that chipsat before the entire Earth has been swept.

If these conditions are met, then the routing mechanism will choose the path

which minimizes the expected time to the ground station. These conditions are

examined for each of a series of orbital configurations.

3.5.1 Performance on Fully Connected Configurations

We consider configurations of orbits for which the maximum altitude separa-

tion for all nodes is within the node-to-node communication distance, as shown

in Fig. 3.7. For this particular case, any two chipsats that are at the same angular

position are capable of communicating. For such configurations of orbits, it is

impossible for any chipsat to overtake any other chipsat without passing within

a communicable distance. Any chipsat that overtakes another chipsat will be

able to communicate with the chipsat that it is overtaking. Thus, there is never
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cost incurred by relinquishing data to a chipsat with a faster estimated time to

ground station (even if the origin chipsat encounters an even-faster chipsat af-

ter handoff has occurred, or if the original chipsat later attains a faster expected

time to ground station). The optimality conditions therefore hold and the de-

rived mechanism chooses the path which minimizes the expected time to the

ground station for these configurations of orbits. Section 3.5.2 shows that, in the

special case that all orbits are circular, the mechanism not only chooses the path

which minimizes the expected time to the ground station, it chooses the optimal

path which minimizes absolute time to the ground station.

3.5.2 Performance on Nested, Circular Configurations

A second configuration of interest is one composed of concentric circular orbits

with altitude separations that may or may not prevent complete connectedness,

Figure 3.8: Nested, unconnected configuration of circular orbits
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as shown in Fig. 3.8. Chipsats on circular orbits travel at a constant velocity and

have zero eccentricity. The equation for the expected time to ground station,

eqn. 3.8, reduces to the form shown in eqn. 3.13.

Eφ−[t](xφ−) =

1
2π − φ−

∫ 2π

φ−

[ TnodeTEarth

2π (TEarth − Tnode)

∫ y

φ−

dφ
]
dy

(3.13)

The consequence is that chipsats on lower altitude orbits will always have a

shorter expected time to ground station, as shown in Fig. 3.9. Chipsats on lower

orbits are always traveling more quickly than chipsats on higher orbits and, as

a result, always have a shorter period, Tnode. All optimality conditions therefore

hold for this configuration of orbits. The myopic routing mechanism always

chooses to pass data down in altitude, which always results in not just the op-

timal expected path to the ground station, but the time-optimal path. For both

connected and disconnected configurations of circular orbits, the derived my-

opic routing mechanism chooses the time-optimal path to the ground station.

Figure 3.9: Expected time to ground station for circular orbits of differing
altitude
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Optimizing over each stage leads to a time-optimal path over all stages.

3.5.3 Performance on Nested, Unconnected Elliptical Configu-

rations

The configuration of particular interest for practical applications is one com-

posed of nested elliptical orbits that are separated by altitudes that exceed the

node-to-node communication distance, as shown in Fig. 3.10. Each chipsat may

communicate with other chipsats that occupy orbits of similar altitudes, but

not those that occupy orbits of significantly higher or lower altitude. This con-

figuration is of particular practical interest because it is the one that, to good

approximation, chipsats deployed from a common mothership will achieve.

Figure 3.10: Nested, unconnected configurations of elliptical orbits
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Because all chipsats are deployed from a common mothership, the collec-

tion of all attainable orbits by each deployed chipsat can be found by adding

some amount of along-track velocity (in the forward or reverse direction) that

is in the range of possible deployment velocities from the mothership. The im-

portant property of this collection of attainable orbits is that they do not cross

over one another. All are nested inside of one another, intersecting at (at most)

one location. If the mothership deploys the chips at its own perigee position,

then all chips will have varying apogee altitudes (all at the same angular posi-

tion) and an instantaneously identical perigee altitude and position, as shown in

Fig. 3.10A. If the mothership deploys the chips at its own apogee position, then

all chips will have varying perigee altitudes (all at the same angular position)

and an instantaneously identical apogee altitude and position. If the mother-

ship deploys the chips between apogee and perigee, then all nodes will land

on a family of orbits in which each constituent orbit has either higher or lower

apogee and perigee than all other orbits, as shown in Fig. 3.10B. None of these,

however, crossover one another. All orbits are strictly losing energy and, as a

consequence, their perigee and apogee altitudes are continuously decreasing.

Orbits with lower average altitudes will lose energy more quickly than orbits

with higher average altitudes because of the increased amount of atmospheric

drag that they experience. The result is that the interior orbits in the initially

nested configuration shrink away from higher altitude orbits more quickly than

the higher altitude orbits approach them. The nested configuration is therefore

maintained. A thought experiment can be used to show that the myopic mech-

anism is suboptimal (it does not necessarily choose the path which minimizes

the expected time to the ground station) on these configurations of orbits.

Consider chipsats A, B, and C that are orbiting on nested, elliptical orbits as
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shown in Fig. 3.10A. Chipsat A carries data to be routed to a ground station.

It is overtaken by chipsat B, which has a shorter expected time to the ground

station than chipsat A and, therefore, receives the data from A. Later, chipsat A

is overtaken by chipsat C, which has a shorter expected time to the ground sta-

tion than A or B. If it is possible for chipsat C to overtake chipsat B at a distance

greater than the distance at which it overtook chipsat A, then the routing mech-

anism is suboptimal because a shorter expected time to ground station could

have been achieved if A had waited to handoff to C. Optimality condition 2

would not hold. This is only possible if the rate at which the perpendicular sep-

aration between the orbits of B and C increases is greater than the rate at which

the angular separation between B and C decreases.

A simple argument proves that this is the case for parts of the orbits of A, B,

and C. Between perigee and apogee, the distance between orbits in the nested

configuration shown in Fig. 3.10A monotonically increases. Between apogee

and perigee, the distance between orbits monotonically decreases. Thus, the

rate of change of the distance between orbits in the nested configuration is zero

at apogee and zero at perigee, with a maximum rate of change at a location

somewhere between apogee and perigee. The rate of angular separation be-

haves differently. For orbits in the configuration under consideration, the veloc-

ity of chipsats with higher apogee altitudes is greater at perigee than the speed

of chipsats with lower apogee altitudes. At apogee, however, chipsats with

lower apogee altitudes have greater velocity than those with higher apogee al-

titudes (see Fig. 3.11). Therefore, the rate of change of angular separation be-

tween chipsats is negative at perigee and positive at apogee. There must then

be a location, somewhere between perigee and apogee, for which the rate of

change of angular separation is zero.
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Figure 3.11: Expected time to ground station for nested elliptical orbits, as
in Fig. 3.10A.

This proves that there must be a range of locations for which the rate of

change of separation between orbits exceeds the rate of change of angular sepa-

ration between chipsats on those orbits. It is possible, therefore, for an incorrect

routing decision to be made. A chipsat may handoff to another chipsat before

encountering a third that has a shorter expected time to ground station. It has

been shown that it is not always the case that this third chipsat will pass within

communicable distance of the first, and therefore the routing mechanism does

not always yield an optimal expected route. Optimality condition 2 does not

hold for nested configurations of elliptical orbits like that shown in Fig. 3.10A.

Through a nearly identical argument, it can be shown optimality condition 2

does not hold for configurations like that shown in Fig. 3.10B either.

Chipsat deployment between apogee and perigee leads to the skewed con-

figuration of orbits shown in Fig. 3.10B, in which all orbits have higher or lower

apogee and perigee than all other orbits. The consequence is that the rate of

change of separation between orbits is increased for one half of the network and
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decreased on the other half of the network. Using precisely the same reasoning

as was employed for the previous configuration, it can be shown that there must

exist a range of locations in this network for which the rate of change of sepa-

ration between orbits exceeds the rate of change of angular separation between

chipsats on those orbits. Therefore, for this configuration also, it is possible for

incorrect routing decisions to be made and the myopic mechanism is sub opti-

mal. It may choose a path which does not minimize the expected time to the

ground station. Sub optimal, however, does not necessarily mean not worth do-

ing. The expected time to the ground station is still reduced by performing the

handoffs as prescribed by the routing mechanism. Sub-optimality only means

that a better handoff could have been made.

3.5.4 Performance on Stochastic, Unconnected Configurations

For a stochastic collection of unconnected orbits, like that shown in Fig. 3.12,

no guarantees whatsoever may be made for optimality conditions 1 or 2. For

this configuration, therefore, the myopic routing mechanism is suboptimal. As

in the nested, unconnected configuration, the expected time to the ground sta-

tion is still reduced by performing the handoffs as prescribed by the routing

mechanism. Sub-optimality only means that a better handoff could have been

made.

44



3.6 Practical Considerations

Implementation of the system described in this chapter will lead to a number of

off-nominal situations that would need to be accommodated. These include sit-

uations in which a collection of chipsats is replenished from a secondary moth-

ership, situations in which a packet misses a communication opportunity with

the ground station, and non-catastrophic GPS failure modes. Each is considered

in this section.

The only assumption on the collection of chipsats is that they all occupy the

same orbital plane. As long as subsequent motherships all occupy the same or-

bital plane (which is not difficult, practically, to achieve), then the assumptions

are not affected. A replenishment may, however, affect the configuration of the

collection of orbits and consequently the optimality of the routing mechanism.

If, for example, the original collection of chipsats occupied a fully connected

nested configuration of orbits, then the routing mechanism would be routing

optimally over that collection chipsats (Section 3.5.1). A replenishment may

Table 3.2: Summary of optimality for each orbit configuration

Orbit Configuration Routing Mechanism Performance

Nested, circular, connected Chooses optimal path

Nested, circular, disconnected Chooses optimal path

Fully connected, non-circular Chooses optimal expected path

Nested, elliptical, disconnected May choose suboptimal expected path

Stochastic, disconnected May choose suboptimal expected path
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Figure 3.12: Stochastic, unconnected configurations of orbits

change the configuration from nested and fully connected to nested and uncon-

nected, or stochastic. The routing mechanism still works over such collections

of orbits but, as explained in this chapter, it is not optimal over such configura-

tions.

It is also possible that a chipsat will fail to find a ground station during a

single pass. The action taken in this case would depend on the mission and the

importance of the packet being routed. For missions in which other chipsats

can be expected to be routing similar information (a solar activity monitoring

mission, for example), then the chipsat might retire the data after it has swept

its entire search space (θ, Section 3.4). Alternatively, for missions requiring a

greater guarantee on each packets delivery, the chipsat may make the conser-

vative assumption that a technical problem has prevented it in particular from

communicating, and it will surrender its packet to a neighboring chipsat.

The ultimate practical consideration is whether latency benefit from the rout-
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ing mechanism is worth the implementation burden, as opposed to having each

chipsat wait for direct downlink to a ground station. Chipsats enable swarms

of hundreds of thousands of spacecraft. In swarms of such number, the con-

nectivity of the network will remain intact until the chipsats begin to deorbit.

The neighboring nodes will change but, if enough are launched, a path will re-

main from each node in the network to each of the other nodes in the network

through intermediate nodes. Consequently, the speed with which a packet can

be routed from any origin node in this network to the destination is limited only

by the time that it takes to decide on a handoff, and the light-travel time of the

packet. In this limiting case of very large constellations, the packet transmission

time savings will be radically reduced by using the strategy described in the

chapter as opposed to the non-strategy of waiting for direct downlink.

3.7 Derivations

This section derives the probability density function for the true anomaly of a

spacecraft on an elliptical, Keplerian orbit, as used in Eqn. 3.8.

3.7.1 Swept Area from Angular Position

Consider an elliptical orbit with semimajor axis a and semiminor axis b, as

shown in Fig. 3.13. Earth sits at focal point F, with perigee at A. As the space-

craft traverses the orbit, it sweeps out the area AFP. The position of the space-

craft is specified by its distance from the Earth (ρ) and the angle from perigee

(θ). Some of the geometric relationships among the above quantities are given
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Figure 3.13: Swept area geometry, origin at focus

by Eqns. 3.14-3.16.

e = eccentricity =

√
1 −

b2

a2 (3.14)

l = linear eccentricity = ae (3.15)

ρ(θ) =
a(1 − e2)

1 + e cos θ
(3.16)

The location of the spacecraft (in Cartesian coordinates, with the origin on

the Earth) can be parametrized as shown in Eqns. 3.17-3.18.
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FP =

ρ cos θ

ρ sin θ

 (3.17)

=


a(1−e2)

1+e cos θ cos θ

a(1−e2)
1+e cos θ sin θ

 (3.18)

Consider scaling the y-coordinate such that the trajectory is a circle of radius

a (the semimajor axis), is shown in Fig. 3.14. This can be done by scaling the

y-axis by a
b = 1

√
1−e2

. The point P gets mapped to Q, and the new position can be

parametrized as shown in Eqns. 3.19 and 3.20. Moving the origin to the center

of the circle, as shown in Fig. 3.15, moves the position of Q to that given by

Eqns. 3.21 and 3.22.

Figure 3.14: Swept area geometry, scaled to circle
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Figure 3.15: Swept area geometry, scaled to circle, origin at center

FQ =

 ρ cos θ

1
√

1−e2
ρ sin θ

 (3.19)

=
a

1 + e cos θ

 (1 − e2) cos θ√
(1 − e2) sin θ

 (3.20)

CQ =

ρ cos θ + ae

1
√

1−e2
ρ sin θ

 (3.21)

=
a

1 + e cos θ

(1 − e2) cos θ + e(1 + e cos θ)√
(1 − e2) sin θ

 (3.22)

The angle φ is the eccentric anomaly. The geometry of Fig. 3.15 yields Eqn.

3.23, which can be simplified to Eqn. 3.14 using a Wiererstrauss substitution.

Solving Eqn. 3.24 for φ yields Eqns. 3.25-3.26. Solving Eqn. 3.24 for θ yield Eqn.

3.27.
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tan φ =

√
1 − e2 sin θ

(1 − e2) cos θ + e + e2 cos θ
(3.23)

tan
φ

2
=

√
1 − e
1 + e

tan
θ

2
(3.24)

φ = atan2
(√

1 − e2 sin θ, (1 − e2) cos θ + e + e2 cos θ
)

(3.25)

= 2 tan−1

√1 − e
1 + e

tan
θ

2

 (3.26)

θ = 2 tan−1

√1 + e
1 − e

tan
φ

2

 (3.27)

With this angle φ, one can calculate the area of sector ACQ using Eqn. 3.28.

This sector includes the region of interest.

AACQ =
1
2

a2φ (3.28)

To obtain the area of the region of interest, subtract and scale Eqn. 3.28. To

begin, subtract off the area of triangle FCQ, leaving the region AFQ remaining,

as shown in Eqns. 3.29-3.31.

AAFQ = AACQ − AFCQ (3.29)

=
1
2

a2φ −
1
2

a2e sin φ (3.30)

=
1
2

a2 [
φ − e sin φ

]
(3.31)
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This is still the area for a circle. To get back to the area for the ellipse, undo

the initial scaling by multiplying by b
a (since scaling in the y-direction scales the

area by the same factor). Doing so yields Eqn. 3.32.

AAFP =
1
2

ab
[
φ − e sin φ

]
(3.32)

3.7.2 Probability Density from Swept Area

Because the spacecraft sweeps equal areas in equal times, the liklihood of find-

ing the spacecraft in this angular region is given by Eqns. 3.33-3.34. This leads

directly to the probability distribution function in φ, shown in Eqn. 3.35. Sub-

stituting the expression for θ yields the probability distribution in θ, shown in

Eqn. 3.36.

P(AFP) =
AAFP

Atotal
(3.33)

=

1
2ab

[
φ − e sin φ

]
πab

(3.34)

P(φ) =
φ − e sin φ

2π
(3.35)

P(θ) =

2 tan−1
(√

1−e
e+1 tan

(
θ
2

))
− e sin

(
2 tan−1

(√
1−e
e+1 tan

(
θ
2

)))
2π

(3.36)
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The probability density function is obtained by taking the derivative of the

distribution function with respect to φ (or θ in the case of P(θ)). The result is

given by Eqns. 3.37-3.38. Eqn. 3.38 is the probability density function for the

true anomaly of a spacecraft on an elliptical, Keplerian orbit.

p(φ) =
∂P(φ)
∂φ

=
1 − e cos(φ)

2π
(3.37)

p(θ) =
∂P(θ)
∂θ

=
(1 − e)3/2

2π
(

1
e+1

)3/2
(e cos(θ) + 1)2

(3.38)

53



CHAPTER 4

HIGH-RISK PLANETARY IMPACT MISSIONS

4.1 Motivation

As with R-selected species, one of the key advantages to employing high quan-

tity for low risk rather than high cost for low risk is that mission success does

not depend on any constituent member of the group. As a consequence, Monar-

chs can go places and take actions that would be prohibitively dangerous for

large, conventional spacecraft. And individual Monarchs are disposable. So, in

addition to the favorable impact mechanics associated with their low size and

mass, Monarchs are extraordinarily well suited for high-risk planetary science

and atmospheric reentry missions. Monarchs can be used to descend to the

surfaces and through atmospheres of celestial bodies, such as Venus, Titan, or

Europa. Their small size makes entry, descent, and landing (EDL) methods sig-

nificantly different for Monarchs than for conventional spacecraft. Importantly,

one does not need to guarantee survival of every Monarch throughout EDL,

only to guarantee the statistics of survival. This mindset is entirely new in the

field of planetary exploration.

The Monarchs’ size makes them better equipped for surviving impacts, tur-

bulence, and other shock-related effects than large conventional spacecraft.

Scaling benefits the robustness of small spacecraft, since mass scales with ap-

proximately the cube of length, and strength with approximately the square

of length. Smaller things exhibit higher natural structural frequencies and

approach crystal-lattice stiffness. They are therefore stronger and can take a

greater beating. This fact is also apparent in nature, where insects have propor-
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Figure 4.1: Impact test article on bed of lunar regolith simulant after ex-
posure to 27,000 g’s of acceleration to simulate impact with the
lunar surface.

tionally greater strength than larger creatures and are capable of withstanding

shocks that larger animals could not survive [43, 40, 32, 28]. Monarchs are the

insects of spacecraft. Their resilience has significant implications for the entry,

descent, and landing technology required to give Monarchs a chance of sur-

vival. There is evidence, in fact, that no such technology is required at all and

that Monarchs may survive impacts with no additional protection.

4.2 Impact Durability Study

An impact durability study in 2017 exposed 12 Monarch precursors (printed

circuit board test articles) to 5000-27,000 g’s of acceleration normal to the board

surface via an elastically loaded drop table. The drop table is described at length

in [29, 11]. Each board carried the same inertial measurement unit (IMU) as

the Monarch, the internal mechanics of which make it the most shock-sensitive
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component on the spacecraft. Lunar regolith simulant was placed underneath

each test article in order to simulate impact with the lunar surface, as shown in

Fig. 4.1. Prior to impact, each board was placed in a static testbed and a batch

of measurements was gathered from the accelerometer, magnetometer, and gy-

Figure 4.2: IMU measurements before and after impact with lunar regolith
simulant, showing that the MEM’s sensor survives and contin-
ues to operate to within the specifications of the datasheet. [30]
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roscope. This step verified that the IMU on each board was operating to within

the specifications of the datasheet, and characterized each sensor before impact.

After impact, each test article was placed in the same testbed and measurements

were gathered again from the same set of sensors in order to characterize degra-

dation. As shown in Fig. 4.2, each IMU continued to operate to within manu-

facturer specifications for zero-g, zero-Gauss, and zero-rate levels after impact

with the lunar regolith simulant [30]. This empirical assessment by no means

guarantees that every Monarch would survive impact with a celestial body, but

it suggests that they have a chance of surviving. If some number k Monarchs

are required for mission success and one deploys N > k, then up to N−k
N per-

cent may fail on impact before the mission itself becomes unsuccessful. Mission

assurance for Monarchs is statistical, and mission assurance equations can be

derived from binomial distributions.

4.3 Statistical Mission Assurance for Impact Missions

Suppose that N chipsats are deployed to the surface of a celestial body, each

with a probability p1 of surviving impact. The probability of having any k ≤

N survive that impact is given by Eqn. 1. Put alternatively, this expression

yields the probability of k ≤ N chipsats surviving 0 days on the surface. Each

chipsat that survives impact then faces the threats associated with existing on

the surface, including radiation. If one lets the probability of surviving each

day be p2 and makes the simplifying assumptions that this probability does not

change with time, and that failures among chipsats are not correlated, then eqn.

2 gives the probability that j ≤ k chipsats survive for M days. These expressions

can be used to find the probability of mission success.
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p(k ≤ N surviving impact)
∣∣∣∣∣p1,N =

N!
k! (N − k)!

pk
1 (1 − p1)N−k (4.1)

p( j ≤ k surviving M days on surface)
∣∣∣∣∣p2,M, k =

k!
j! (k − j)!

(
pM

2

) j (
1 − pM

2

)k− j
(4.2)

For a mission like the one under consideration, mission success is defined

as at least some specified number j ≤ N of chipsats remaining alive on the sur-

face for a specified number of days, M. Eqn. 3 yields the probability of success

provided the number of chipsats deployed to the surface (N), the number of

days associated with the mission success criterion (M), the number of remaining

chipsats associated with the success criterion ( j), the probability of any individ-

ual chipsat surviving impact (p1), and the probability of any individual chipsat

surviving each day on the celestial body (p2).

p( j ≥ (k ≤ N) surviving impact and M days on surface)
∣∣∣∣∣N,M, p1, p2 =

N∑
k= j

 N!
k! (N − k)!

pk
1 (1 − p1)N−k

·

k∑
i= j

k!
i! (k − i)!

(
pM

2

)i (
1 − pM

2

)k−i
 (4.3)

Eqn. 3 represents a general model for evaluating the likelihood of success

for any of these high-risk planetary missions. The variables within this equa-

tion must be populated with values specific to the particular mission being per-

formed. The values for p1 and p2 will vary substantially from one celestial body

to the next and must be determined via testing. The values for j, M, and N will

depend on mission requirements. Fig. 4.3 shows a heatmap for the probability

of mission success for a range of impact survival probabilities and daily survival

probabilities. This heatmap is generated for the particular case where success is

58



Figure 4.3: The probability of mission success, defined as 5 of 100 chipsats
surviving on the the surface of a celestial body for 100 days,
for a range of impact survival probabilities and daily survival
probabilities.

defined as at least 5 of 100 chipsats surviving for 100 days on the surface. This

paradigm in mission assurance places value on the confidence bounds, achieved

by the quantity rather than quality of individual spacecraft. The nature of the

data that Monarchs can gather once on the surface is best illustrated through a

case study.
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4.4 Case-Study Planetary Science Mission

A case-study planetary science mission was performed in order to gather a rep-

resentative dataset. 20 Monarchs were deployed to the surface of Earth for 24

hours, during which time they remotely reported in-situ data from their pay-

load sensor suite, which included a temperature and humidity sensor. Each

also reported its location, as measured by its onboard GPS. The locations of the

deployed Monarchs and the data that they gathered is shown in Fig. 4.4. For

this case study, the planet in question happens to be Earth and the sensory pay-

load happens to include temperature and humidity sensors, but there is nothing

special, from a technical perspective, about that particular celestial body or sen-

sory payload. For other celestial bodies, the payload may include a different

suite of sensors.
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Figure 4.4: Dataset from a 24-hour case-study planetary science mission
conducted on Earth.
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CHAPTER 5

ANTICIPATING FUTURE CAPABILITIES: OPTICAL TRAJECTORY

RECOVERY

5.1 Monarchs with cameras lost in space and time

As surface-mounted sensors and processors continue to improve, one can ex-

pect for the capabilities of the Monarch to continue to expand. Cameras are

developing particularly rapidly, thanks largely to the cell phone industry. One

can expect camera-equipped chipsats in the coming years as a consequence of

this development. The addition of a camera will not only enable different sorts

of scientific missions, it will also enable optical navigation in deep space. This

chapter anticipates a Monarch equipped with a camera and offers a method for

solving a problem that will likely be a common one for chipsats in deep space:

being lost. This chapter considers a chipsat adrift in cislunar space with no

knowledge of its trajectory, its attitude, or of the time. It presents a method by

which such a chipsat may use onboard cameras, an onboard relative clock, and

an onboard ephemeris table to autonomously recover the set of all trajectories

which agree with camera observations. It does so in two steps. It first uses a

batch of measurements to coarsely reduce the search space of possible positions

and times. For each position/time pair, it then instantiates a particle filter to

recover velocities and improve estimates of associated positions and times. The

result is a family of trajectories that all produce measurements which agree with

those gathered by the onboard cameras.
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5.2 Background

Various aspects of spacecraft optical navigation have been studied by a number

of researchers. Liounis, Daniel, and Christian consider a manned spacecraft in

the Earth-Moon system that must autonomously navigate back to Earth using

optical observations of the Earth, Moon, and stars [21]. Their algorithm involves

an image filter on features of the celestial bodies that feeds an Extended Kalman

Filter (EKF), which converges to the spacecraft trajectory. The filter converges to

within 66 meters of true spacecraft position and 1.5 cm/sec of true velocity for

a 100 km circular lunar orbit. For the situation treated in this chapter, the lack

of time knowledge precludes the use of a similar EKF, which requires a known

dynamics model. Furthermore, this analysis assumes cheap, COTS cameras that

lack the resolution and contrast required to disambiguate any features on any

celestial body, or to gather any information at all about stars other than the

Sun. In [19], Lightsey and Christian develop an image-processing algorithm

for an onboard optical system. The algorithm calculates the apparent centroid

and diameter of a celestial body and calculates the relative angle between a

body horizon and a reference star. The present study assumes that a similar sort

of image processing procedure has already taken place and uses this a priori

information to determine spacecraft trajectory and time.

A similar problem to that treated in this chapter was addressed for Deep

Space 1, the first interplanetary spacecraft of NASA’s New Millennium pro-

gram. The spacecraft used onboard cameras to sight up to 12 asteroids at a

time and used those sightings in a least-squares filter to estimate the spacecraft

orbital parameters. The ephemerides for each body are assumed to be known

a priori, and errors in the ephemerides are minimized by combining informa-

63



tion from all observed asteroids. Monte Carlo simulation shows convergence

to true position to within approximately 95 km, and convergence to true veloc-

ity to within approximately 0.2 m/s [8]. As with other previous research, the

authors assume knowledge of time which provides a known dynamics model.

The content of this chapter departs from existing research in that it considers the

situation in which the spacecraft must recover not only its position and velocity

but also the absolute time. Since time dictates the position of the gravitational

bodies and thus the dynamic equations for the spacecraft, conventional filters

like the EKF and sigma-point filter cannot be immediately employed.

5.3 Assumptions

This chapter assumes that the spacecraft is adrift in the vicinity of the Earth and

Moon. The spacecraft possesses no knowledge of its trajectory, attitude, or the

time, and it cannot communicate with the Deep Space Network or other Earth-

based ranging facilities. It carries onboard cameras that provide digital images

of the Earth, Sun, and Moon. I assume a camera arrangement which guaran-

tees that all celestial bodies always remain in the field of regard of the camera

system, and that they are not occluding one another. The camera system is not

assumed to be able to resolve any features on any of the celestial bodies, but it

is able to discriminate each from the others. An onboard clock measures time

elapsed since starting the recovery procedure, and an onboard ephemeris ta-

ble for each celestial body provides high-precision knowledge of its position

for each time included in the table. I do not treat the image-processing as-

pect of this problem. Instead, this chapter assumes that an algorithm similar to

that in [19] provides the necessary information from an image. I assume zero-
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Table 5.1: Optical trajectory recovery assumptions

Available Information Ephemerides for Earth, Sun, and Moon

Elapsed time

Measured size of celestial bodies

Measured separation among celestial bodies

Unavailable Information Present position

Present velocity

Present time

Spacecraft attitude

Features on celestial body surfaces

Measurement Assumptions Persistent view of Earth, Sun, and Moon

No occlusion of any celestial body by another

Disambiguation among Earth, Sun, and Moon

Zero-mean, Gaussian measurement noise

mean, Gaussian, uncorrelated measurement noise. Section 5.9 of this chapter

discusses practical considerations associated with the described trajectory re-

covery method, including the consequences of lifting these assumptions. Table

5.1 summarizes all assumptions.

5.4 State Representation and Dynamics

This chapter describes a method for recovering the set of all spacecraft states

which agree with camera observations of the Earth, Sun, and Moon. The state
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of the spacecraft includes its position and velocity in an Earth-centered inertial

frame, and the absolute time. These states are coupled by the set of differential

equations that govern how they evolve from time-step to time-step. Changes

in position depend on the spacecraft’s velocity, and changes in velocity depend

on the gravitational landscape that the spacecraft occupies. This gravitational

landscape depends not only on the position of the spacecraft, but also on the

positions of the celestial bodies and, thus, the absolute time. See eqns. 5.1-5.4.

I chose not to model J2 and higher-order effects, nor did I model perturbing

forces like drag, because they are much less significant in cislunar space than at

lower altitudes.

x =

[
x y z ẋ ẏ ż t

]T

(5.1)

=

[
rec ṙec t

]T

(5.2)

r̈ec = −
µe

(rT
ecrec)

3
2

rec + µm

 rem − rec

(rT
cmrcm)

3
2

−
rem

ρ3
em

 + µs

 res − rec

(rT
csrcs)

3
2

−
res

ρ3
es

 (5.3)

ṫ = 1 (5.4)

5.5 Measurement Representation

As discussed in Section 5.3, this chapter assumes that the Earth, Sun, and Moon

all remain in the field of regard of the camera system, and that they do not oc-

clude one another. The spacecraft may therefore gather measurements of the

sizes and relative positions of each of the celestial bodies at each moment in
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Figure 5.1: Measured quantities

time. Specifically, these measurements include the width, in pixels, of each ce-

lestial body and the separation, in pixels, among each of the celestial bodies.

Fig. 5.1 illustrates these measurements. The onboard clock enables the space-

craft to also measure elapsed time. In order for these measurements to provide

information about the spacecraft state (eqn. 5.2), these measurements must be

represented in terms of the state variables. Doing so yields the nonlinear mea-

surement model given by eqns. 5.5, and simplified in eqn. 5.6.
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z1 = cos−1

 −xdmx − ydmy − zdmz + (−x)2 + (−y)2 + (−z)2√
(−x)2 + (−y)2 + (−z)2

√
(dmx − x) 2 +

(
dmy − y

)
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 P
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√
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 P
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√
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 P
Θ

z4 =
2P
Θ

tan−1

 re√
(−x)2 + (−y)2 + (−z)2


z5 =

2P
Θ

tan−1

 rm√
(−x + dmx)2 + (−y + dmy)2 + (−z + dmz)2


z6 =

2P
Θ

tan−1

 rs√
(−x + dsx)2 + (−y + dsy)2 + (−z + dsz)2


z7 = t − t0 (5.5)

In eqn. 5.5, di j (where i = m, s and j = x, y, z) represents the time-dependent

x, y, and z position of the Moon and the Sun in an Earth-centered inertial frame.

These quantities may be pulled directly from the onboard ephemeris table for

each body, but knowledge of the absolute time is required to pull from the cor-

rect row of the table. z1, z2 and z3 are the pixel separations among the three

celestial bodies. z4, z5, and z6 are the pixel widths of the three celestial bodies.

z7 is the elapsed time since beginning to recover time and trajectory. There is

noise associated with each measurement. As stated in Section 5.3, this chapter

assumes zero-mean, Gaussian, uncorrelated noise for all measurements. The

measurement error covariance matrix therefore takes the form shown in eqn.

5.7.
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=



h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

h6(x)

h7(x)



= h(x) (5.6)

R =



σ2
1 0 0 0 0 0 0

0 σ2
2 0 0 0 0 0

0 0 σ2
3 0 0 0 0

0 0 0 σ2
4 0 0 0

0 0 0 0 σ2
5 0 0

0 0 0 0 0 σ2
6 0

0 0 0 0 0 0 σ2
7



(5.7)

5.6 Search Space Reduction

The recovery algorithm aims to find all relative minima of the cost function

shown in eqn. 5.8. The search space for this problem is extensive. The space-

craft could be anywhere within 800,000 km of the Earth, traveling anywhere

between zero to tens of km/sec in any direction, at any moment in the mission

lifetime. Properly populating that search space with particles for a particle filter

would be prohibitively expensive, especially for the sorts of processors used by

small spacecraft. Instead, one can use a batch of measurements to coarsely re-

duce the search space. This batch of measurements includes a rapidly gathered
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collection of width measurements for Earth, Moon, and Sun (in pixels), and a

rapidly gathered collection of angular separation measurements among Earth,

Moon, and Sun (in pixels).

J(x) =
1
2

[z − h(x)]T R−1 [z − h(x)] (5.8)

5.6.1 Reducing search space in the temporal dimension

The batches of Earth-width measurements, Moon-width measurements, and

Earth-Moon angle measurements are used to reduce the search space through

time. The spacecraft calculates the mean and variance of the Earth-width mea-

surement batch, the Moon-width measurement batch, and the Earth-Moon an-

gle measurement batch. From these means and variances, a normal distribution

is generated for each set of measurements that includes many more samples

than batched measurements. Each of these samples is then transformed using

eqns. 5.9-5.11. The Earth-width samples and Moon-width samples are trans-

formed from pixels to distance measurements (in kilometers) from the space-

craft to each celestial body (eqn. 5.9 and eqn. 5.10, respectively). The angular

separation measurements are transformed from pixels to radians (eqn. 5.11).

This yields a new set of distributions for distance to Earth (in km), distance to

Moon (in km), and separating angle between Earth and Moon (in radians).
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ρce ≈
re

tan z4Θ

2P

(5.9)

ρcm ≈
rm

tan z5Θ

2P

(5.10)

θecm ≈ z1
Θ

P
(5.11)

Eqn. 5.12 converts each set of Earth-distance, Moon-distance, and Earth-

Moon angle samples to a separation distance between Earth and Moon. For

each row of the onboard ephemeris table, the true separating distance between

the Earth and Moon is computed. Fig. 5.2 shows the true and calculated

Earth/Moon separated distances over 75 days as calculated by a spacecraft on a

lunar flyby orbit. The spacecraft in question is assumed to gather pixel measure-

ments with a standard deviation of error of 0.1 pixels from a camera with 3280

x 2464 pixel resolution. By subtracting the approximated separating distance

Figure 5.2: True and measured separation between Earth and Moon
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from the true separation distances and finding all of the nearest approaches to

zero, the spacecraft arrives at a probabilistic distribution for time. Section 5.8

contains an example of this. A set of maximum likelihood estimates is obtained

by retaining each relative maximum in the sampled distribution. These prelim-

inary estimates need not and will not be accurate. The goal is simply to reduce

the search space to a discrete number of guesses.

ρem ≈ (ρ2
ce + ρ2

cm − 2ρceρcm cos θecm)
1
2 (5.12)

5.6.2 Reducing search space in the spatial dimensions

The sampled distances from spacecraft to Earth place the spacecraft anywhere

on the surface of one of a family of spheres which surround the Earth, each of

which with a radius equal to a sampled Earth distance. Similarly, the sampled

distances from spacecraft to Moon place the spacecraft anywhere on the sur-

face of one of a family of spheres surrounding the Moon. The position of the

spacecraft is constrained to the intersections of all these spheres, which place

it somewhere on one of a family of rings surrounding the line connecting the

Earth and Moon. The centers of these rings lie on the line connecting the center

of the Earth to the center of the Moon, and they are radially perpendicular to

that line. There is a ring associated with each possible moment in time. From

any of these locations in space and time, the expected measurements for Earth

width, Moon width, and Earth-Moon angle of separation will agree with those

gathered.

Two batches of measurements remain for further reducing the search space
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of possible spacecraft locations. These include the batch of measured Earth-Sun

angles and the batch of measured Moon-Sun angles. In order to incorporate

this information, the cost associated with each point on each ring is computed

using eqn. 5.8. For each ring, there exist two locations that agree with all mea-

surements: one is above the plane formed by the Earth, Sun and Moon, and the

other is symmetrically across that plane.

The search space is thus reduced to a collection of positions in space and

time. For each moment in time, there is a pair of positions (one position above

the plane formed by the Earth, Sun, and Moon, and one symmetrically below

that plane). The number of pairs depends on the length of the ephemeris table.

If the mission lifetime (and thus the length of the ephemeris table) is less than

the orbital period of the moon, then the search space reduction yields a single

pair of positions (for non-singular celestial configurations, see Section 5.9). If the

ephemeris table includes multiple orbits of the Moon around the Earth, then one

finds multiple pairs of positions. For each location, a particle filter is instantiated

to recover the associated velocity and refine estimates for position and time.

5.7 Particle Filter

This subsection briefly discusses the general structure of a particle filter, and

then discusses the specific instantiation for the trajectory recovery problem un-

der consideration. At the end of this subsection, there is an abridged overview

of the filter.
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5.7.1 General Structure

The general structure of a particle filter is as follows. First, the search space is

populated with a large number of potential solutions (particles). When the filter

begins, each of these potential solutions has an equal probability of being the

one that best represents the true state of the system. Each particle is propagated

forward in time one time step by integrating its dynamic equations (eqn. 5.3-

5.4). This transforms the initial collection of particles into a new collection of

particles which may have had its shape distorted by the nonlinear equations

that describe the time evolution of each particle.

Next, a set of expected measurements is generated for each particle in the

collection using the measurement model. A true measurement is then gath-

ered and compared to the hypothetical measurements that would be expected

from each particle. The particles are re-weighted by comparing the true and hy-

pothetical measurements, with those that do a better job predicting the actual

measurements receiving more weight than those that do a worse job. An esti-

mate for the state is calculated by taking a weighted average, and an estimate

for the covariance is calculated numerically. The whole process is then repeated

for the next time step. If one particle begins to dominate, then a new set of

particles is generated based on that particle, all are given equal weight, and the

process starts over.

5.7.2 Specific Instantiation

A particle filter is instantiated from each location/time pair in the reduced

search space. For each pair, Ns particles are generated with Gaussian distri-
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butions in location, velocity, and time as shown in eqns. 5.3-5.4. The initial

covariance is set to a value large enough to ensure that some of the particles

populate the correct region of the search space. Both of these parameters (the

number of particles and the initial covariance) are filter design elements with no

optimal answer. Unlike in linear systems and filters, one cannot solve for an op-

timal particle filter design. Instead, numerical simulations are required in order

to identify parameter values that work well enough for a particular application.

In Section 5.8, I enumerate the values that were used for a case study trajec-

tory recovery, but different values will work better for spacecraft on different

trajectories. The filter design, however, remains constant.

Initially, each particle, which is characterized by a position, velocity, and a

time, is instantiated with equal weight. Each particle is then propagated by

numerically integrating its own dynamics model. After the particles have been

propagated to the next timestep, their weights are re-calculated by comparing

the measurements that would be expected from each particle (as calculated by

the measurement model, eqns. 5.5-5.6) to the actual measurements. Because

of the high gradients and size of the searchcspace being traversed, a unique

weighting method is required for the particle filter to converge.

First, the innovation between each particle’s expected measurement and the

true measurement is calculated. Ordinarily, one calculates the weight of each

particle by taking the exponential of the R-norm of the innovation. Instead,

because the innovations in this problem have such a wide range of values, one

can maintain better scaling on the weights by calculating the natural log of the

exponential and adding the log of the previous weight.

With this weighting convention, particles that do a better job predicting the
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true measurement receive a greater weight. It is possible that the weights cal-

culated in eqn. 5.17 will have a huge range of values. They are rescaled by

the maximum weight. Finally, one can find the minimum weight and rescale

once more so that the maximally-weighted particle has weight 1. The rescaled

weights are given by the exponential of the difference between each weight and

the minimum weight. The result is that better particles have greater weight, and

worse particles have lesser weight. The updated state and covariance estimates

are given by the weighted average of the propagated particles.

The effective number of particles can be calculated using eqn. 5.23. If the

effective number of particles is greater than the resampling threshold, Nt, then

the particles retain their weights and are propagated again to repeat the above

cycle for the next timestep. If not, then the particles are resampled and their

weights are reset according to eqn. 5.24. The nature of this problem calls for a

somewhat unique method for resampling. In a conventional problem, one uses

roulette selection to probabilistically resample particles, resulting in multiple

copies of high-weight particles and fewer (or zero) copies of low-weight parti-

cles. The repeated high-weight particles are then spread out via process noise

and dithering by sampling from an Epanechnikov kernel function. For this par-

ticular problem, that method of resampling does not work reliably. Because the

measurements depend only on position and time (and not on velocity), infor-

mation must accumulate for a number of timesteps in order to learn anything

about the spacecraft’s velocity. By instead resampling such that the spacecraft’s

position is driven almost entirely by the velocity, one can more quickly converge

on the correct answer.

In the event that the number of effective particles below the threshold, the
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particles are replaced with a new set. The position and time states for each of

these new particles are given by the current position and time estimates. The

velocity for each particle is sampled from a multivariate Gaussian distribution

with a mean of the latest velocity estimate and a covariance of the sum of the er-

ror covariance estimate and the process noise covariance. In order to maintain

diversity, the process noise covariance for the velocity states is kept relatively

large. This resampling procedure is summarized in eqn. 5.24-5.25. After re-

sampling, the particles are again propagated according to eqn. 5.3-5.4, a new

measurement is gathered, and the process is repeated.

Summary of filter steps

1. Generate particles and particle weights:

χ0
i = N (xi(0), P(0)) (5.13)

w0
i =

1
Ns

(5.14)

2. Propagate particles through dynamics equations:

χ1
i = f

(
χ0

i

)
(5.15)

3. Calculate the innovation of each particle:

ν1
i = z1 − h

(
χ1

i

)
(5.16)

4. Find log-based weights:

log(w1
i ) = −

1
2

(
(ν1

i )T Rν1
i

)
+ log(w0

i ) (5.17)

5. Rescale log-based weights:

log(w1
i ) =

log(w1
i )

max(log(w1
i ))

(5.18)
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6. Solve for weights, rescale such that maximum is of value 1:

w1
i = emin(log(w1

i ))−log(w1
i ) (5.19)

7. Update the state and covariance estimates:

x̂(1) =

Ns∑
k=0

w1
i χ

1
i (5.20)

P(1) =

Ns∑
k=0

w1
i

(
χ1

i − x̂(1)
) (
χ1

i − x̂(1)
)T

(5.21)

(5.22)

8. Calculate the effective number of particles:

Ne f f =
1∑Ns

k=0

(
w1

i

)2 (5.23)

9. If the effective number of particles is above the resample threshold, all par-

ticles retain their weights and are propagated to the next time step. If not, the

particles are resampled:

χ1
i =

x̂(1) ŷ(1) ẑ(1) N




ˆ̇x(1)

ˆ̇y(1)

ˆ̇z(1)

 , P(1) + Q

 t̂(1)



T

(5.24)

w1
i =

1
Ns

(5.25)

5.8 Case Study

The subsection considers a simulated trajectory recovery. The spacecraft in

question is en route to the Moon, at a distance approximately halfway between

Earth and Moon on December 15, 2017. It has lost knowledge of its location,
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Figure 5.3: True and measured Earth distance

Figure 5.4: True and measured Moon distance
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Figure 5.5: True and measured Earth-Moon angular separation

velocity, attitude, and the time. It must use its onboard cameras, ephemerides

tables, and timer to recover all of its possible trajectories, per the method de-

scribed in previous subsections. This case study assumes that the spacecraft

is equipped with a camera system composed of 2500x2500 pixel cameras with

fields of view tiled such that the field of regard includes all directions. Cam-

era measurements of the angular widths and separations of and among celestial

bodies are assumed to have a zero-mean Gaussian error with standard devia-

tion of 0.1 pixels. Per the assumptions of Section 5.3, no celestial body occludes

any other at the time of trajectory recovery.

Temporal reduction of search space

The spacecraft first reduces its searchspace in time, per section 5.6.1. It does

so by rapidly gathering images of the Earth and Moon, and then uses eqns.
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Figure 5.6: True and measured Earth-Moon separation distance

5.9-5.11 to convert those measurements to Earth-distance, Moon-distance, and

Earth-Moon angle. The spacecraft calculates the mean and variance of each of

these distributions, and uses that mean and variance to generate 100 samples

for Earth distance, Moon distance, and separating angle. Figs. 5.3-5.5 show

these distributions, along with the true quantities from the simulation (which

are unknown to the simulated spacecraft).

For each set of Earth distance, Moon distance, and Earth-Moon angle, the

spacecraft uses eqn. 5.12 to calculate the distance separating the Earth and

Moon. The results, for this case study, are shown in Fig. 5.6. Each of these

calculated distances is then compared to the true distances separating the

Earth and Moon for the entire mission lifetime, as calculated from the onboard

ephemerides tables. This generates the probabilistic distribution in time, shown

in Fig. 5.7. The ephemerides tables used for this simulation are the same that
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Figure 5.7: Probabilistic distribution for time from Earth-Moon separation,
t = 20 days

were used to generate Fig. 5.2. The maximum likelihood estimates for time are

ascertained by finding all relative maxima of this distribution.

Spatial reduction of search space

The distributions for distance to Earth and Moon (Figs. 5.3-5.4) and the distribu-

tion for separation distance between Earth and Moon (Fig. 5.6) can also be used

to isolate the spacecraft to a collection of rings surrounding the line connecting

the Earth and Moon. For each Earth-distance approximation, there is a sphere

surrounding the Earth on which the spacecraft could reside. The same is true for

the Moon distance approximations. The intersections of these spheres comprise

a distribution of rings between the Earth and Moon that agree with the sepa-

ration measurements. Figs. 5.8-5.9 show these distributions. The Earth/Moon
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Figure 5.8: Distribution of rings of spacecraft positions (Earth/Moon not
to scale, only to show orientation of ring)

Figure 5.9: Distribution of rings of spacecraft positions (Earth/Moon sizes
and distances not to scale, only to show orientation of ring)
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sizes and distances are not to scale in these figures, they are for illustrating the

orientation of the ring in space. These figures also show the true location of the

spacecraft to illustrate that it falls within the reduced search space.

For each possible moment in time (Fig. 5.7), the spacecraft may reside any-

where on the rings shown in Figs 5.8-5.9. From any of these locations in space

and time, the expected measurements for Earth width, Moon width, and Earth-

Moon angle of separation will agree with those gathered. As described in 5.6.2,

the spacecraft further reduces the search space by calculating the cost (eqn. 5.8)

associated with each point in this ring. Doing so incorporates the final two

measurements: Earth-Sun angle and Moon-Sun angle. Fig. 5.10 shows the true

position of the spacecraft in the ring and the least costly particle in the ring. The

rest of the particles are plotted with an opacity in proportion to their cost. For

configurations of Earth, Sun, and Moon which span R2 (see section 5.9), there

Figure 5.10: Distribution of rings of spacecraft positions (Earth/Moon not
to scale, only to show orientation of ring)
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are two locations on the ring that agree with all measurements. One is above

the plane formed by the Earth, Sun and Moon, and the other is symmetrically

across that plane.

A pair of such points exists for each possible moment in time. This reduces

the search space to a series of clusters in space and time. For each moment in

time, there is a pair of clusters (one cluster above the plane formed by the Earth,

Sun, and Moon, and one symmetrically below that plane). If the mission lifetime

were less than the orbital period of the moon, one would expect to find only two

clusters. Since the mission under consideration in this analysis is long enough to

include multiple orbits of the moon around the Earth, one finds multiple pairs

of clusters. These are shown in Fig. 5.11. It can be seen that the true spacecraft

position is within one of these clusters. From each cluster, I instantiate a particle

filter.

Figure 5.11: Reduced spacial searchspace, ECI frame
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Table 5.2: Particle filter case-study parameters

Number of particles Ns=1000

Resample threshold Nt=200

Initial position estimate cluster mean

Initial velocity estimate 0

Initial time estimate cluster mean

Initial position error std. dev. 8000 km

Initial velocity error std. dev. 5 km/sec

Initial time error std. dev. 4 hours

Pixel measurements std. dev. 0.5 pixels

Elapsed time measurements std. dev. 0.0014 sec

Particle Filter

The particle filter is described in section 5.7.2, and summarized in eqns. 5.13-

5.25. For this case study, I used the particular parameter values given in Table

5.2. Running this particle filter on each cluster yields the family of trajectories

shown in Fig. 5.12. The true spacecraft trajectory is overlayed on top of this

family of trajectories to illustrate that the spacecraft is indeed following one of

the collection.

5.9 Practical Considerations

The trajectory recovery strategy considered in this chapter has a long list of as-

sumptions, which implies a long list of practical considerations. Some of those
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Figure 5.12: Family of trajectories which agree with gathered measure-
ments

are considered in this section. In particular, I consider the case where the space-

craft is able to choose the correct cluster (as shown in Fig. 5.11) from the collec-

tion of clusters, I consider position ambiguities and singularities in the measure-

ment model, and I consider how performance would be affected by the addition

of attitude knowledge.

5.9.1 Selecting a cluster

Each of the clusters shown in Figs. 5.11-5.12 is separated from the others by

tens of thousands of kilometers in distance and multiple days in time. In the

situation that the spacecraft has sufficient a priori knowledge of its trajectory or

of the time to choose one of these clusters, then it can use the particle filter to

recover its trajectory. This is accomplished by simply running the particle filter
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Figure 5.13: True and estimated spacecraft trajectory

on only the correct cluster.

For this case study, a point in the cluster nearest the spacecraft is used to seed

a particle filter as described in section 5.7.2. The filter converges to within tens

of kilometers of the true spacecraft position, tenths of kilometers per second of

true spacecraft velocity, and tens of minutes of the true time in approximately

500 seconds, as shown in Figs. 5.13-5.15. In Fig. 5.13, more recent estimates

have greater opacity than older estimates.

5.9.2 Position ambiguities and singularities

Assuming that the celestial bodies are in a non-singular configuration (they

span R2), then these measurements isolate the spacecraft to one of two positions.

One is above the plane formed by the Earth, Sun, and Moon, and the other is

symmetrically below the plane. This symmetry becomes apparent when one

transforms the vectors of Eqns. eqns. 5.5-5.6 from the ECI coordinates to a coor-
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dinate system generated by performing a Gram-Schmidt orthogonalization of

the vectors from Earth to Moon and Earth to Sun, defined by unit vectors êx, êy,

and êz. Doing so defines a coordinate system in which the êx axis points from

the Earth to the Moon, the êy axis is orthogonal to the êx axis and points in the

direction of the Sun, and the êz axis is orthogonal to the plane formed by the

Earth, Sun, and Moon.

êx =
REM

||RES ||
(5.26)

i = êx · RES (5.27)

êy =
RES − iêx

||RES − iêx||
(5.28)

êz = êx × êy (5.29)

REM is the vector connecting Earth to Moon and RES is the vector connecting

Earth to Sun. The transformation from the ECI to these time-varying coordi-

nates defined by the ephemerides (the ”ephemeral” frame, denoted by super-

script e or the tilde) is formed by stacking these unit vectors into a rotation ma-

Figure 5.14: Error in estimated time
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Figure 5.15: Error in estimated z-velocity and z-position

trix.

eQE =

[
E êx̃

E êỹ
E êz̃

]
(5.30)

eQB =

[
Bêx̃

Bêỹ
Bêz̃

]
(5.31)

These rotation matrices and unit vectors can be used to define the new variables

shown in eqns. 5.32-5.36.

[
x̃ ỹ z̃

]T

= eQE E
[
x y z

]T

(5.32)

= eQB B
[
x y z

]T

(5.33)

d̃mx = REM · êx̃ = REM ·
REM

||REM ||
= ||REM || (5.34)

d̃sx = RES ·
REM

||REM ||
(5.35)

d̃sy = RES ·

[
RES −

(
RES ·

REM

||REM ||

)
REM

||REM ||

]
(5.36)

By construction of the frame, the Earth, Sun, and Moon share the same z̃ coordi-

nate. In these coordinates, the vectors from the spacecraft to each celestial body
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are given by eqns. 5.37. The transformed measurement model is given by eqns.

5.38-5.42.

er̂ce =



x̃

(x̃2+ỹ2+z̃2)
1
2

ỹ

(x̃2+ỹ2+z̃2)
1
2

z̃

(x̃2+ỹ2+z̃2)
1
2


er̂cm =



x̃+d̃mx

((x̃+d̃mx)2+ỹ2+z̃2)
1
2

ỹ

((x̃+d̃mx)2+ỹ2+z̃2)
1
2

z̃

((x̃+d̃mx)2+ỹ2+z̃2)
1
2


er̂cs =



x̃+d̃sx

((x̃+d̃sx)2+(ỹ+d̃sy)2+z̃2)
1
2

ỹ+dsy

((x̃+d̃sx)2+(ỹ+d̃sy)2+z̃2)
1
2

z̃

((x̃+d̃sx)2+(ỹ+d̃sy)2+z̃2)
1
2


(5.37)

ζ1 = cos θecm =

 x̃2 − x̃d̃mx + ỹ2 + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2

 = h1 (x) (5.38)

ζ2 = cos θecs =

 x̃2 − x̃d̃sx + ỹ2 − ỹd̃sy + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2

 = h2 (x) (5.39)

ζ3 = cos θmcs =

 x̃2 − x̃d̃mx − x̃d̃sx + d̃mxd̃sx + ỹ2 − ỹd̃sy + z̃2(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2

 = h3 (x) (5.40)

ζ4 = θe = 2 tan−1

 d̃e√
x̃2 + ỹ2 + z̃2

 = h4(x) (5.41)

ζ5 = θm = 2 tan−1

 d̃m√
(x̃ − d̃mx)2 + ỹ2 + z̃2

 = h5(x) (5.42)

In this transformed coordinate system, it becomes clear that the measurements

cannot disambiguate the spacecraft position (x̃, ỹ, z̃) from the position symmet-

rically across the plane (x̃, ỹ,−z̃). This is made apparent by the fact that the vari-

able z̃ does not appear in any form other than its square, z̃2. Thus, if the planets

span R2, there will be two points in space associated with each point in time. It

is worth noting that one additional reference vector would eliminate this ambi-

guity. In the vicinity of the Galilean moons, for instance, position determination

would be entirely unambiguous in non-singular configurations.
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In the event that the Earth, Sun, and Moon align, eQE loses rank and the

ephemeral frame becomes ill-defined. d̃mx and d̃sx of eqns. 5.34-5.36 remain

defined, but d̃sy reduces to the zero vector. In this case, the measurement model

reduces to eqns. 5.43-5.47.

ζ1 = cos θecm =

 x̃2 − x̃d̃mx +
[
ỹ2 + z̃2

]
(
x̃2 +

[
ỹ2 + z̃2]) 1

2
(
(x̃ − d̃mx)2 +

[
ỹ2 + z̃2]) 1

2

 = h1 (x) (5.43)

ζ2 = cos θecs =

 x̃2 − x̃d̃sx +
[
ỹ2 + z̃2

]
(
x̃2 +

[
ỹ2 + z̃2]) 1

2
(
(x̃ − d̃sx)2 +

[
ỹ2 + z̃2]) 1

2

 = h2 (x) (5.44)

ζ3 = cos θmcs =

 x̃2 − x̃d̃mx − x̃d̃sx + d̃mxd̃sx +
[
ỹ2 + z̃2

]
(
(x̃ − d̃mx)2 +

[
ỹ2 + z̃2]) 1

2
(
(x̃ − d̃sx)2 +

[
ỹ2 + z̃2]) 1

2

 = h3 (x) (5.45)

ζ4 = θe = 2 tan−1

 d̃e√
x̃2 +

[
ỹ2 + z̃2]

 = h4(x) (5.46)

ζ5 = θm = 2 tan−1

 d̃m√
(x̃ − d̃mx)2 +

[
ỹ2 + z̃2]

 = h5(x) (5.47)

While x̃ remains defined, ỹ and z̃ now only appear in the measurement equations

as the coupled quantity
[
ỹ2 + z̃2

]
. In this case, the measurement model is no

longer able to discern between any two points that are equidistant from the

vector from the Earth to the Moon.

5.9.3 Introduction of attitude knowledge

Suppose that the spacecraft knew its attitude. In this case, one would be able to

measure the angle of separation between two celestial bodies in the range [0, 2π]

rather than simply the magnitude of separation in the range [0, π]. One way of

representing all of this information is to add the sine of the angles of separation
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to the measurement model. Doing so reduces the number of possible angular

separations for celestial configurations that span R2 from two to one. The sine

is obtained by taking the square root (ambiguously signed) of one minus the

square of the cosine of the angle. This augmented measurement model is given

by eqns. 5.48-5.55.

ζ1 = cos θecm =

 x̃2 − x̃d̃mx + ỹ2 + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2

 = h1 (x) (5.48)

ζ2 = cos θecs =

 x̃2 − x̃d̃sx + ỹ2 − ỹd̃sy + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2

 = h2 (x) (5.49)

ζ3 = cos θmcs =

 x̃2 − x̃d̃mx − x̃d̃sx + d̃mxd̃sx + ỹ2 − ỹd̃sy + z̃2(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2

 = h3 (x) (5.50)

ζ4 = θe = 2 tan−1

 d̃e√
x̃2 + ỹ2 + z̃2

 = h4(x) (5.51)

ζ5 = θm = 2 tan−1

 d̃m√
(x̃ − d̃mx)2 + ỹ2 + z̃2

 = h5(x) (5.52)

ζ6 = sin θecm = ±

√√√√√√√
1 −

 x̃2 − x̃d̃mx + ỹ2 + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2


2

= h6 (x) (5.53)

ζ7 = sin θecs = ±

√√√√√√√
1 −

 x̃2 − x̃d̃sx + ỹ2 − ỹd̃sy + z̃2(
x̃2 + ỹ2 + z̃2) 1

2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2


2

= h7(x) (5.54)

ζ8 = sin θmcs = ±

√√√√√√√
1 −

 x̃2 − x̃d̃mx − x̃d̃sx + d̃mxd̃sx + ỹ2 − ỹd̃sy + z̃2(
(x̃ − d̃mx)2 + ỹ2 + z̃2

) 1
2
(
(x̃ − d̃sx)2 + (ỹ − d̃sy)2 + z̃2

) 1
2


2

= h8(x)

(5.55)

The quantity in the square root of eqns. 5.54-5.55 can be obtained without solv-

ing the attitude problem. The only information that is unavailable is the sign on
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the square root. Solving the attitude problem introduces this information to the

system. In other words, the attitude information introduces binary information

to the system: positive or negative on each square root.

This binary information introduces information about the sign of the coor-

dinates. The signs of the x̃ and ỹ position coordinates are already known unam-

biguously given the cosine information; so, the attitude information introduces

information about the sign of the z̃ coordinate in the ephemeral coordinates.

That is to say, it reduces the number of possible locations from two to one.
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CHAPTER 6

METHODS FOR UNPRECEDENTED DATASETS

6.1 Background and motivation

There is a systematic method for conducting science in space. Long before a

spacecraft is designed or built, scientists carefully articulate the hypothesis that

they intend to confirm or deny. With that hypothesis articulated, they decide

on the variety and quantity of data required to investigate it. Engineers design

every aspect of the spacecraft and the spacecraft mission around these data re-

quirements. Scientists choose payload sensors, and engineers choose attitude

sensors and actuators so that the spacecraft can point and slew with sufficient

accuracy and speed for the payload sensors. Scientists choose the mission des-

tination for the data that lives there, and engineers size the power system (and

other subsystems) based on that location. The spacecraft telemetry and com-

mand subsystem is built around the bandwidth requirements for communicat-

ing data. The goal of a scientific mission in space is a dataset, and that dataset

is generally very specific to the question being answered.

There are rare examples of spacecraft that create a dataset which contains

answers to scientific questions that we did not think to ask. Nearly all of these

examples have to do with remote sensing. Consider the Mars Reconnaissance

Orbiter (MRO), for example, which is equipped with a camera. The dataset from

that camera is sufficiently rich for scientists to mine it for answers to questions

that they did not have in mind when the spacecraft launched. The data con-

tains discoveries beyond which scientists and engineers designed the mission

to investigate. Or, alternatively, the scientists and engineers designed the mis-
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sion such that it would generate a dataset which contains surprises. A swarm

of Monarchs generates a dataset that shares this property.

A swarm of Monarchs will gather a spatially distributed dataset which in-

cludes information from many different in-situ sensors, of the sort described in

Chapter 2. Of course one can design a chipsat mission such that it generates

a dataset which will answer a specific scientific question. However, the dataset

that chipsats generate has a richness similar to that from the MRO. The informa-

tion from all those sensors spread over a large area for a large amount of time

will likely contain answers to questions that we did not think to ask. Finding

those answers in the Monarch dataset requires a different set of techniques than

those employed for the MRO, however.

It is no coincidence that we find surprises in MRO imagery data, since our

brains have evolved for extracting information from images. The human brain

is phenomenally good at image processing. Our brains have not evolved for

extracting information from distributed measurements from accelerometers and

other sensors like those described in Chapter 2. If there are patterns and insights

to be found within the dataset generated by a distributed swarm of Monarchs,

we require different sorts of techniques for finding those patterns and insights.

This chapter describes one such technique.

This chapter describes a method for performing data prognostics using sym-

bolic regression. Symbolic regression searches a space of analytical mathemat-

ical expressions for the one which matches a particular dataset, from no par-

ticular starting point. It is a method for finding correlations and relationships

among sensor values in a dataset. Data prognostics uses pattern recognition in

datasets to make predictions. So, data prognostics using symbolic regression is a
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method for generating analytic mathematical expressions from a dataset which

will make predictions based on patterns discovered within that dataset.

This technique is entirely application agnostic. Each source of data is treated

strictly as a sequence of numbers, with no connection to the physical quanti-

ties that they represent. For this reason, I am free to demonstrate the utility

of this technique for Monarch data using a dataset which was not generated

by Monarchs. NASA maintains a Prognostics Data Repository for exactly this

purpose. This repository contains datasets for training and testing prognostics

strategies.

This chapter treats the characterization of turbofan engine degradation as a

particular application for the general technique. The proposed genetic program

(GP) characterizes engine degradation, and then uses that characterization to

both detect engine faults and predict the remaining lifetimes of engines after a

fault. The genetic program exploits the fact that engine degradation manifests

itself as changing correlations between sensor outputs. The NASA Prognostics

Data Repository provides a training set in which 100 simulated engines are run

to failure, and a test set in which a separate set of 100 simulated engines are

shut off before they fail. The GP uses the training fleet of engines to identify the

sensor relationships that indicate engine fault and predict remaining lifetime,

and then observes the learned sensor relationships in the test fleet. The genetic

program successfully detects the moment that the fault occurs for every engine

in the test fleet and accurately predicts the remaining lifetime of the engines

after the fault.
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6.2 Problem Definition

The input to the system is sensor data from 100 engines. Each engine has 26

sensors that, for the training data set, record information until the engine fails.

The output of the system is a single number for each engine, which corresponds

to that engine’s remaining lifetime. The program evolves functions of the form

shown in eqn. 6.1.

Lremaining = f (sensori, sensor j, sensork, . . . ) (6.1)

Where Lremaining is remaining engine lifetime, which may be a function of any

combination of some or all of the sensor outputs. The program is entirely sys-

tem agnostic. Each sensor is treated purely as a source of data without any

connection to the physical world.

6.3 System Architecture

6.3.1 Data

The data used for both training and testing comes from NASA’s Prognostic Data

Repository. Each dataset consists of multivariate time series, with each time se-

ries corresponding to a different sensor or operational setting. The data was

produced by C-MAPSS simulation software, the industry standard for simu-

lating transient effects in turbofan engine degradation. For each engine in the

training dataset, the engine starts under normal operation, develops a fault, and
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runs to failure [35] [31]. In the test dataset, the engines all start under normal

operation, develop a fault, but are not run to failure. This analysis uses dataset

FD001, which is composed of engines of all the same type.

6.3.2 Structure

The problem is framed in a machine learning context. The genetic program

evolves tree data structures, where each node is an operator and each leaf is

either a constant or an array of sensor output. The operators are arranged in a

dictionary, and they include:

• Arithmetic: Left leaf and right leaf are combined according to the arith-

metic operator {+, -, *, /}. These are four separate operators.

• Trigonometry: Left leaf is multiplied by the result of acting one of the three

main trigonometric functions on the right leaf. These are three separate

operators.

• Exponentiation: Left leaf is multiplied by the exponential of the right leaf.

• Logarithm: Left leaf is multiplied by the natural logarithm of the right leaf.

• Noise: Left leaf is multiplied by the right leaf, which has been modified by

additive Gaussian noise.

• Standard Deviation: Left leaf is multiplied by standard deviation of right

leaf.

• Gradient: Left leaf is multiplied by gradient of right leaf.

• Second Gradient: Left leaf is multiplied by second gradient of right leaf.
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• Window Operators: Left leaf is multiplied by one of the above 3 opera-

tors (standard deviation, gradient, or second gradient) acting only on the

most recent 10 data points from the right leaf. These are three separate

operators.

Sensor output is arranged in a separate dictionary, with each key corre-

sponding to a separate engine and the value of each key being a list of 26 lists,

each list corresponding to a different sensor. The GP evolves functions with the

variables represented as keys of these dictionaries. When a function is evaluated

for fitness, it is evaluated on every engine in the training fleet.

At a high level, the program works with objects of two classes. The ”person”

class is a tree structure. An object of the person class has the ability to gener-

ate predictions for a particular engine, to evaluate its own depth, to perform

crossover with another object of the person class, to mutate itself, to determine

if it is dominant to another object of the person class, and to evaluate the accu-

racy of its predictions are on a particular engine.

The ”population” class is, fundamentally, a list of objects of the person class.

The population has the ability to perform operations on the population as a

whole. It may add a person to the population, gather the traits of each mem-

ber of the population (uniqueness, age, predictability, etc.), rank the population

according to their traits, select a parent population from the entire population,

and breed the members of the parent population to replenish its original size.

These functions are combined into broad methods that attempt to maximize the

fitness of the entire population.

As input, these broad optimization methods take mutation rate, population
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size, selection pressure, elitism pressure, and maximum allowable depth for the

tree structures that compose the population.

6.4 Method

The genetic program operates on a population of solutions. For each generation,

the population goes through five distinct steps. These steps include:

1. Ranking the population according to the established fitness criteria

2. Selecting a subset of the population that will survive/breed into the next

generation.

3. Performing crossover among the surviving parent population to create a

population of children.

4. Performing mutation on the child population.

5. Adding the child population to the parent population to replenish the pop-

ulation to its original size.

6. Returning to step 1, and repeating for many generations.

Each of the above steps is described in sections 6.4.1-6.4.5.

6.4.1 Rank the Population

Elitist multi objective optimization on a Pareto front is used to maintain genetic

diversity in the population. Solutions are optimized along four dimensions:
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• Age: Solutions that have been in the population for a shorter amount of

time are more fit (in the age dimension) than solutions that have been

evolving for a long time. This helps maintain diversity in the population

by giving solutions with more potential to evolve an advantage over those

that have become stagnant. During crossover, the child adopts the age of

its oldest parent.

• Mean Prediction Error: Solutions that have a lower average prediction er-

ror (measured across all engines in the training fleet) are more fit than

solutions that have higher average error.

• Uniqueness: Solutions that have better predictability on particular engines

for which other members of the population are unable to predict are more

fit in the uniqueness dimension. This helps maintain diversity.

• Worst Prediction: Solutions with lower error on their worst prediction are

more fit than solutions with higher error on their worst prediction (even

if they have a lower mean error over all engines). This prevents the algo-

rithm from getting stuck at the mean remaining lifetime of all engines in

the fleet.

The solutions that compose the population are placed on a series of Pareto

fronts according to the NSGA non-dominated sort described by Seshadri in [10].

In brief, the population is sorted in the following way:

1. Initialize the number of individuals that dominate each member of the

population to 0 and the members of the population that each member of

the population dominates to an empty list.
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2. For each member of the population p, loop through every other member

of the population q. If p dominates q, then add q to the list of solutions that

p dominates. If q dominates p, then increment the domination counter by

1.

3. If the domination counter equals 0 for a particular solution, then add that

solution to the leading Pareto front.

4. Initialize a second Pareto front as an empty list.

5. Decrement the domination counter for every solution by 1. If the dom-

ination counter for any of the solutions becomes 0, add it to the second

Pareto front (because this indicates that it was only dominated by one of

the individuals in the first Pareto front).

6. Return to step 3 and continue until all solutions have been placed in a

Pareto front

Domination is defined as being equally or more fit along each of the four

dimensions of fitness (age, mean prediction error, uniqueness, and worst pre-

diction), and more fit along any one of the dimensions. Once each solution is in

a front, the algorithm moves on to the selection process [36]. See Fig. 6.1.

6.4.2 Selection

The algorithm uses elitism in that any solution that lives in the first Pareto front

is guaranteed to survive into the next generation. All members of the popula-

tion have some probability of surviving, but the solutions that occupy the more

fit Pareto fronts have a higher probability of making it to the next generation.
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Figure 6.1: Visualization of NSGA non-dominated sort. The relative sizes
of the Pareto fronts change from generation to generation.

The algorithm works with a selection pressure of 0.4. This is an empiracally

determined parameter that can be tuned for different applications. Tighter se-

lection pressures led to homogeneity in the population. After the members of

the leading Pareto front are added to the surviving population, 80 percent of

the remaining survivors are picked from the top 60 percent of the old popula-

tion, and 20 percent of the remaining population are randomly generated new

solutions. It is rare that any of these solutions have better predictive abilities

than the older solutions that have been evolving for longer, but because they

are younger than the rest of the solutions a few are able to survive to the next

generation. This helps maintain diversity in the population. See Fig. 6.2.

6.4.3 Crossover

In order to replenish the population to its original size, crossover is performed

to produce child solutions from the surviving parent solutions. The mother is

preferentially chosen to be among the elite members of the population (ranking
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Figure 6.2: Constituent members of parent population after selection. The
relative sizes change for each generation, depending on the size
of the leading Pareto front.

somewhere in the top 20 solutions), but the father is randomly selected from

the parent population. This practice leads to useful diversity in the children.

When both parents are randomly selected from the surviving population, they

produced very diverse children, none of whom are particularly fit. When both

parents are selected from the elite members of the surviving population, the

population loses diversity.

Because the members of the population are functions that are represented

as a tree structure, crossover amounts to swapping branches between parents

to produce a new child that has traits of both mother and father [39]. See Fig.

6.3. The depth of crossover is randomly determined for each parent every time

crossover occurs.
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Figure 6.3: Two parent solutions producing a child solution by swapping
branches.

6.4.4 Mutation

After crossover creates a new child, it is mutated before being placed into the

population. While crossover allows the population to strategically explore new

parts of the optimization landscape, mutations are small variations that allow

solutions to climb to the nearest peak. The mutations are constructed such that

they are not disruptive to the good genes in the genome.

The mutation rate cools as the algorithm runs, until it reaches the 100th gen-

eration. At this point the mutation rate heats back up before cooling off again

over the course of the next 100 generations. The algorithm has the ability to

mutate the value of a constant, change a constant to the output of sensor, or

change a sensor variable to a constant. The algorithm may not mutate opera-

tors, because this sort of mutation is often extremely disruptive to the existing

genes.
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6.4.5 Replacement into Population

In order to maintain diversity, the children are replaced into the population us-

ing a form of deterministic crowding. After a child is created, the program

checks whether it dominates either of its parents. If the child dominates a par-

ent, then it replaces the parent.

Because the algorithm uses a cooling (and periodically heated) mutation

rate, there are a few generations for every 100 for which mutations are extremely

rare. If crossover occurs between two solutions that are not very deep (contain

very few branches), it is possible for the child to be identical to one of its par-

ents. In order to prevent duplicate solutions in the population, every child is

compared with every member of the population before being injected into it. If

a child does not replace a parent, and it is not identical to a solution that already

lives in the population, then it enters the population.

6.5 Experimental Evaluation

6.5.1 Methodology

The fitness of each potential solution is judged in the training dataset alone,

according to the criteria discussed in section 6.4.1. For sake of making accu-

rate predictions, however, the important variable is prediction error. The other

dimensions of the Pareto front exist to provide diversity and to help make im-

provements along this one dimension of actual concern. The constituent mem-

bers of each population compete in the training set, and the performance of the
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GP is baselined against that of the hill climber and random search in the train-

ing data set. Every variable that composes a dimension of the Pareto front is

a dependent variable, and the sensor outputs form the independent variables.

The performance data, however, is mean prediction error in the training data set.

The solutions that better characterize the training dataset are considered better

solutions than those that cannot make as accurate predictions. Comparisons are

made between populations through performance curves that show predicability

plotted against the number of evaluations.

Performance on the test dataset is evaluated by applying the function gener-

ated on the training dataset and comparing the predictions against the true val-

ues. These predictions can be judged on an engine-by-engine basis by plotting

the true remaining lifetime of the engine (for every moment in time) along with

the prediction generated by the function (for every moment in time). These are

the sorts of plots that Moghaddass and Zuo used to make empirical judgements

of the performance of their algorithm [31].

6.5.2 Results

The Proof of Concept

In the engine prognostics problem, the GP is asked to return a function of sensor

output that returns the remaining lifetime of the engine. A priori, however, there

is no guarantee that such a solution exists. For that reason, it is important to

create a toy problem that verifies the GP will be able to find such a solution, if

it does exist. This toy problem should be one where the solution exists and is

known. In other words, there exists a combination of sensors in the toy dataset
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Figure 6.4: Proof of Concept: Percent error between estimated and true re-
maining engine lifetimes in the training data set. Shows GP
finding the optimal solution constructed for the toy problem.

that will return remaining engine lifetime with absolute precision.

This can be accomplished by giving the GP, hill climber, and random search

access to a clock on each engine. The clock is represented as another sensor,

the output for which starts at 0 and linearly increases until the engine fails.

The remaining lifetime of the engine, therefore, is just a scaling of this sensor’s

output. The optimal solution should include just the output of the clock and a

scaling. Fig. 6.4 shows that the GP finds the optimal solution in the toy dataset,

and it does so faster than either the random search or the hill climber. This

suggests that, if such a solution exists in the real dataset, the GP will be able to

find it.
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Engine Prognostics

By removing the clock sensor from each engine, all optimization techniques are

forced to search for a function that yields remaining engine lifetime based solely

on sensor output. Fig. 6.5 shows that the GP generally finds a better absolute so-

lution than the hill climber, though not always (as indicated by the overlapping

error bars). The best solution that the GP found is shown in eqns. 6.2.

Li f etime = −119.95 sin (sensor23 − sensor6) (6.2)

Fig. 6.6 shows the estimated vs. actual remaining engine lifetime of the first

20 engines in the test data set. The GP not only captures the moment that the

fault occurs in each engine (represented by the elbows in each curve), but also

creates an empirically close estimate for each engines remaining lifetime after

Figure 6.5: Difference between estimated and true remaining engine life-
times in the training data set. Y axis is average difference be-
tween true and estimated number of remaining engine life cy-
cles.
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Figure 6.6: Estimated vs. actual remaining engine lifetime.

the fault.

The genetic program described in this chapter is able to determine the mo-

ment of failure for each engine tested. Although the GP’s advantage over the

hill climber lessens in the engine prognostics problem (vs. the toy problem), the

GP generally does a better job characterizing engine failure in both situations.

The correlation that the GP isolates as being indicative of engine failure is the

difference between the outputs of sensors 23 and 6. It uses this information to

determine when each engine fails, and to accurately predict remaining lifetime

after failure.
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CHAPTER 7

CONCLUSION

The Monarch applies biological principles for mission assurance to space ex-

ploration and consequently is the first spacecraft to trade high quantity for low

mission risk. By taking a statistical approach to mission assurance and devalu-

ing the importance of any particular spacecraft, Monarchs open the door to a

new paradigm in space access and exploration. They are not small versions of

large spacecraft, and they do not replace large spacecraft. Instead, Monarchs

have an entirely new and unique set of use cases. They enable distributed, in-

situ sensing, which will provide scientific datasets of an unprecedented variety.

These datasets enable science of an unprecedented variety. As a consequence of

their size and quantity, Monarchs can perform entry, descent, and landing mis-

sions that would be far too risky for conventional spacecraft to attempt. And,

perhaps just as significantly, Monarchs reduce the cost of access to space by or-

ders of magnitude. Because they can be carried to orbit by the hundreds or thou-

sands, the launch costs may be divided among many hundreds or thousands of

Monarchs. The result is that space is no longer only accessible to governments,

large companies, and universities, but also to high school classrooms and hob-

byists. The Monarch is the greatest force for the democratization of space that

has ever existed.
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CHAPTER 8

APPENDIX

8.1 Extensions for digital agriculture

Monarchs provide remote delivery of spatially distributed in-situ data over an

extended period of time. This core capability has a number of applications in

space, many of which have been discussed in this dissertation, but it also has

applications on Earth. I sought out a few of these terrestrial applications for the

Monarchs in my final year of graduate work. I wanted to test the Monarchs in

uncontrolled environments to prove feasibility of the space missions discussed

in earlier sections, but, as long as I was gathering datasets, I wanted for those

datasets to also be valuable for other people. In-situ data exfiltration from vine-

yards and dairy calves met these criteria. Each provides a challenging environ-

ment for the Monarchs and utility for the data that the Monarchs produce.

8.1.1 Vineyards

The Problem

Fruit growers in cool-climate regions lose yield each season to diseases, pests,

and frost/cold damage. In order to mitigate risk of fruit loss to diseases and

pests, farm managers apply chemical sprays throughout the growing season.

In the case of vineyards and orchards, managers apply chemical sprays 12-15

times each season. The materials and labor associated with each of these sprays

is expensive. At $700/acre, these sprays represent one of the largest annual

113



Figure 8.1: Annual variable costs for production of v. vinifera grapes in
the Finger Lakes region.

variable costs for cool-climate vineyards and orchards, as shown in Fig. 8.1.

[51]

With sufficient information, a farmer could safely eliminate several sprays

each season. Disease forecasting models exist for most major fruit diseases, pro-

viding guidance on when to spray the crop. However, many growers do not use

the disease forecasting models due to their lack of precision. The alternative to

using the forecasting models is to spray on a calendar basis, which is commonly

adopted in the production of wine grapes, where growers will spray every 7-10

days depending on weather and disease pressure. The high cost of each spray

is considered lower than the potential cost of losing yield.

Expensive weather stations ( $2,000) are used to inform the disease forecast

models. Some growers will purchase their own but many will use a station that

could be several miles away, providing inaccurate climate data for their site. The

data from these weather stations is used to calculate disease and pest pressure.
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This strategy is intended to allow farm managers to spray only when necessary,

but in practice these models are often not used.

Regardless of whether a farm has its own weather station or is using one

many miles away, these weather stations report environmental conditions in

the air at the station height, but not the actual microclimatic conditions inside

the vine canopies where the fruit are located. In cool-climate regions, this is not

a good approximation. The leaves trap air and moisture near the fruit, creating

optimal conditions for disease development that are not reflected in the weather

station data. Because the farm managers have no means of knowing the con-

ditions at the fruit, they must over-spray to mitigate risk of fruit loss. These

microclimates can be significant enough for substantially different disease and

pest forecasts inside the canopy vs. outside.

Furthermore, the conditions within the vineyard vary substantially with ter-

rain. Cool air tends to flow like a viscous fluid, settling in the low points of the

land. The assumption that environmental conditions across an entire farm are

the same is also an inaccurate one and leads to increased risk of yield loss to

both disease and frost/cold. Because fruit farmers do not know the conditions

within vine canopies (next to the fruit), and because they do not know how

conditions vary across their land, they must over-spray in order to be confident

that the risk of fruit loss is mitigated. These sprays represent the biggest annual

variable cost for vineyards. Lack of distributed environmental measurements

also puts farmers at an increased risk of frost damage, which can be mitigated

with turbines and heaters.
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A Solution: Monarchs

With knowledge of the conditions within vine canopies, and with knowledge of

how conditions vary across a farm, farm managers may apply chemical sprays

and take preventative action against frost only when and where the conditions

demand it. Such knowledge would prevent spending money on material and

labor associated with unnecessary sprays, as well as preventing under-spraying

at the places in the farm where conditions create exceptionally high risk of

cold/frost, disease, or pest damage. In order to provide this knowledge, I de-

veloped a modified version of the Monarch spacecraft presented in earlier sec-

tions of this dissertation. The modified Monarch includes some extra, vineyard-

relevant sensors (a relative humidity sensor and a temperature sensor), lower-

cost solar cells, and a supercapacitor for energy storage. See Fig. 8.2.

Monarchs are deployed within leaf canopies across a farm, where they use

their sensors to take measurements of the local environment. Each then uses its

processor and radio to communicate those measurements both to other Monar-

chs and to an onsite receiver station. The onsite receiver station has an inter-

Figure 8.2: Agricultural version of the Monarch.
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Figure 8.3: Receiver station for vineyard-deployed Monarchs, components
labeled.

net connection. Data can be radioed a quarter-mile, line-of-sight, from each

Monarch to the receiver station. The receiver station then communicates the

data that it receives over the internet to a remote server. Once the communi-

cated data is online, it may be viewed by the user via a website.

The receiver station is built from commercially available electronics. Radio

signals from the Monarchs are gathered by an antenna. These signals are ampli-

fied by a low-noise amplifier, and then accumulated by an RTL-SDR software-

defined radio. This software-defined radio is plugged in, via USB, to a Rasp-

berry Pi computer with an internet connection. The Raspberry Pi performs

the necessary realtime signal processing to convert the raw I/Q data from the

software-defined radio to packets from the deployed Monarchs. It then sends

these packets over the internet to a remote server. The receiver station can either

be powered directly from a wall outlet, or via solar cells and a battery, as shown

in Fig. 8.3.
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Experiment and Data

I conducted two experiments. These experiments determined the extent to

which Monarchs could measure microclimates within leaf canopies. The first

experimental site was Anthony Road Winery in Penn Yan, NY. At this site,

Figure 8.4: Monarch deployed without sunshade at Anthony Road Win-
ery, Penn Yan, NY.

Figure 8.5: 24 hours of data from Anthony Road Winery. June 18-19, 2019.
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Figure 8.6: Monarch underneath a sunshade in Cornell’s Lansing, NY
vineyard.

20 Monarchs were deployed without sunshades within grape leaf canopies, as

shown in Fig. 8.4. These Monarchs reported in-situ measurements of tempera-

Figure 8.7: Monarch deployed in grapevine canopy in Cornell’s Lansing,
NY vineyard.

119



Figure 8.8: 4 weeks of temperature/humidity data from 20 Monarchs in
Cornell’s research vineyard in Lansing, NY.

ture and relative humidity (along with their GPS locations) every 5 minutes for

24 hours (June 18-19, 2019). Fig. 8.5 shows all of the data collected over this

period.

The second site was the Cornell research vineyard in Lansing, NY, where 20

Monarchs were deployed with sunshades for a 4-week period of time (August

22, 2019 - September 24, 2019). Fig. 8.6 shows one of these Monarchs under a

sunshade, and Fig. 8.7 shows the Monarch and sunshade within the leaf canopy.

Each of these Monarchs transmitted in-situ measurements of temperature and

relative humidity (along with their GPS coordinates) to the onsite receiver sta-
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tion. Fig. 8.8 shows all of the data collected over this period.

Analysis and Conclusions

Some aspects of these experiments worked well, and some aspects did not. The

rainstorm indicated by the spike in humidity at the end of the Anthony Road

dataset (Fig. 8.5) destroyed all of the Monarchs in that deployment. In the sub-

sequent deployment, I added a sunshade which protected the Monarchs from

Figure 8.9: 20 hours of data from Anthony Road Winery, overlayed data
from conventional weather station. June 18-19, 2019.
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Figure 8.10: Data from Lansing vineyard overlayed with conventional
weather station data, 9/1/2019 - 9/11/2019.

Figure 8.11: Comparison of overnight lows, Monarchs vs. conventional
weather station, Lansing vineyard, 9/1/2019 - 9/11/2019.

running water, as shown in Figs. 8.6 and 8.7. With this addition, all Monarchs

survived all four weeks in the Lansing vineyard, as evidenced by the dataset

shown in Fig. 8.8. The second motivation for the addition of the sunshade is

shown in Fig. 8.9, which shows the same dataset, with data from the onsite
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Figure 8.12: August 25-26, 2019 overnight measurements from Monarchs
and conventional weather station.

conventional weather station overlayed. June 19, 2019 was a partly cloudy day.

It can be seen that, when the sun was out, the temperatures as reported by the

Monarchs were artificially high by as much as 10 degrees Farenheit. During

the cloudy parts of the day, there is precise agreement between the Monarch

data and the conventional weather station data. This indicates that the sun was

warming the Monarchs, leading to artificially high temperatures. Overnight

and during cloudy parts of the day, however, this is not a problem.

In the 4-week Lansing deployment, I added the sunshade to all Monarchs

as shown in Fig. 8.6. Poor ventilation still led to temperature measurements

that were too high during sunny afternoons. As with the Anthony Road de-

ployment, the overnight temperature readings for which the sun was not an
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issue showed much better reliability. This is evidenced by Fig. 8.10. Because of

artificial sun heating, the only fair comparisons that can be made between the

Monarchs and the conventional weather stations are those which were gathered

at night. Fig. 8.11 shows a comparison of overnight lows between September 1

and September 11, 2019 in the Lansing vineyard. The Monarchs are indeed mea-

suring a microclimate within the leaf canopies. Fig. 8.12 compares overnight

measurements on August 25-26, 2019 in the Lansing vineyard, showing signif-

icant climate variation in vs. out of the canopy. Future deployments will use

a Stevenson Screen enclosure to prevent high daytime temperature measure-

ments.

8.1.2 Dairy Calves

Dairy calves provided another challenging environment for stress-testing the

Monarchs. In collaboration with Francisco Yeal-Lepes of the veterinary school

at Cornell, I attached 10 Monarchs to collars which were placed on 1-5 day old

dairy calves at Sunnyside Farms in Scipio Center, NY for 3 weeks. Fig 8.13

shows a calf wearing a Monarch.

Figure 8.13: Dairy calf wearing a Monarch
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Experimental Goals and Results

The experimental goals associated with the dairy calves were simpler than those

associated with the vineyards. The suite of sensors with which the Monarchs

were equipped was not ideal for use with the calves. To gather a more valuable

dataset, a calf-specific Monarch will be constructed that includes some addi-

Figure 8.14: Temperature, humidity, and ambient light measurements
from calves, individually colorized
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Figure 8.15: Two days of ambient light measurements, napping calves in-
dicated.

tional sensors (like an ammonia sensor) and omits some irrelevant ones. The

goal of this experiment was to build a case for a grant which would fund a calf-

specific Monarch. I aimed to show that the Monarchs could continually trans-

mit over a long enough period of time for an experiment to take place, that the

calves would be unbothered by the collars and sensors, and to learn anything

that that I could from the available sensors that might inform the calf-specific

board. In this respect, the experiment was a success. Fig. 8.14 shows the tem-

perature, humidity, and ambient light measurements. The measurements from

each calf are individually colorized.

From these data I learned some important things for a future calf deploy-

ment. Because the Monarchs are mounted on the outside of the collars, as shown

in Fig. 8.13, the temperature measurements are a difficult-to-understand mix of

ambient and skin temperatures. In subsequent deployments, the temperature

sensor will be mounted against the skin, which will give better measurements

of skin temperature.

I also learned the utility of the ambient light sensor for this particular appli-
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Figure 8.16: Accelerometer measurements from calves, each calf individu-
ally colorized.

cation. In general, the light sensor saturates during daylight hours, and drops to

zero overnight. However, a number of measurements can be seen each day for

which the ambient light detected is significanly lower than saturated. These

measurements seem to be associated with napping calves, which tuck their

chins into their forearms and prevent light from reaching the ambient light sen-

sor. Fig. 8.15 shows these datapoints within a two-day subset of the full dataset.
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The final lesson learned for subsequent calf experiments is the necessity for

much more frequent measurements in order to detect activity levels. Each of

the Monarchs in this deployment reported a set of measurements every five

minutes. The accelerometer data, Fig. 8.16, shows that this is insufficiently

frequent for capturing calf activity. In subsequent cattle deployments, Monarchs

will report IMU data with a much greater frequency.
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